

NetMaster REXX Guide

r11.7

CA Mainframe Network

Management

This documentation and any related computer software help programs (hereinafter referred to as the

"Documentation") are for your informational purposes only and are subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part,

without the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may

not be used or disclosed by you except as may be permitted in a separate confidentiality agreement between you and

CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation,

you may print a reasonable number of copies of the Documentation for internal use by you and your employees in

connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print copies of the Documentation is limited to the period during which the applicable license for such

software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to certify

in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION "AS IS" WITHOUT

WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO THE END USER

OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION,

INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR

LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and

is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with "Restricted Rights." Use, duplication or disclosure by the United States Government is subject to the

restrictions set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section

252.227-7014(b)(3), as applicable, or their successors.

Copyright © 2009 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein

belong to their respective companies.

CA Product References

This document references the following CA products:

■ CA NetMaster® Network Management for TCP/IP (CA NetMaster NM for

TCP/IP)

■ CA NetMaster® Network Management for SNA (CA NetMaster NM for SNA)

■ CA NetMaster® Network Automation (CA NetMaster NA)

■ CA SYSVIEW® Performance Management (CA SYSVIEW)

■ CA 7 Workload Automation (CA 7 WA)

■ CA Scheduler Job Management (CA Scheduler JM)

Contact CA

Contact Technical Support

For your convenience, CA provides one site where you can access the information

you need for your Home Office, Small Business, and Enterprise CA products. At

http://ca.com/support, you can access the following:

■ Online and telephone contact information for technical assistance and

customer services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Provide Feedback

If you have comments or questions about CA product documentation, you can

send a message to techpubs@ca.com.

If you would like to provide feedback about CA product documentation, complete

our short customer survey, which is also available on the CA Support website,

found at http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs
http://www.ca.com/docs

Contents 5

Contents

Chapter 1: Introducing NetMaster REXX 11

About This Guide.. 11

NetMaster REXX .. 12

Migration from Tivoli NetView .. 12

NetMaster REXX and TSO/E REXX ... 13

Libraries and Source Format ... 13

REXX Source Recognition .. 14
Compile and Save in Object Form .. 14

Language and Implementation Differences ... 14

NetMaster REXX Structure and General Syntax ... 15

Expressions and Operators .. 15

Clauses and Instructions .. 16

Assignments and Symbols ... 16

Commands to External Environments .. 16

Keyword Instructions.. 16

ADDRESS ... 16
ARG .. 16

CALL ... 17

DO ... 17

DROP ... 17

EXIT .. 17

IF .. 17

INTERPRET ... 18

ITERATE .. 18

LEAVE .. 18
NOP .. 18

NUMERIC ... 18

OPTIONS ... 19

PARSE .. 20

PROCEDURE .. 21

PULL.. 21

PUSH ... 21

QUEUE ... 21

RETURN .. 22
SAY .. 22

SELECT ... 22

SIGNAL ... 22

TRACE .. 22

6 NetMaster REXX Guide

UPPER .. 23

Built-in Function Support .. 23
TSO/E External Functions ... 24

Parsing ... 25

Numbers and Arithmetic ... 25

Conditions and Condition Traps .. 25

External Programming Interface ... 25

Command Descriptions .. 26

Get Help About a Command ... 26

SHOW .. 26

FLUSH .. 27
GO ... 27

LOAD ... 27

START .. 27

UNLOAD .. 28

REXX ... 28

RXCHECK ... 28

RXCTL .. 29

RXCTL OFFLOAD .. 30

Control REXX Processes ... 31

Chapter 2: ADDRESS Environments 33

About ADDRESS Environments .. 34

Standard Commands .. 34

SLEEP REXX Command—Wait for a Specified Period .. 36

ADDRESS Environment Descriptions ... 36

MVS .. 36

LINK and ATTACH ... 36

CA Product Interfaces ... 37

SYSVIEWE .. 37

CA-7 ... 37
CASCHD .. 37

Chapter 3: NetMaster REXX Environment 39

CALL ... 40

CMD/COMMAND .. 41

EXECIO ... 42

GLOBALV ... 43

VARTABLE .. 44

VARTABLE ADD ... 45

VARTABLE ALLOC ... 46

Contents 7

VARTABLE DELETE .. 49

VARTABLE FREE ... 51
VARTABLE GET .. 52

VARTABLE PUT .. 54

VARTABLE QUERY ... 56

VARTABLE RESET ... 57

VARTABLE UPDATE .. 58

WRITE .. 60

Return Codes ... 62

Chapter 4: Tivoli NetView Emulation 63

About Tivoli NetView Emulation .. 63

General REXX Execution ... 64
Supported Address Environments .. 64

Supported External Functions.. 65

Locate the Tivoli NetView Data Sets Required by Emulation 65

Chapter 5: REXX Analyzer 67

About the REXX Analyzer .. 67

REXX Analyzer Processing ... 67

Analysis Process .. 67

Report Generation Process... 68

Procedures That Passed Analysis ... 68

Using the REXX Analyzer .. 68
Access the Primary Menu .. 68

Analyze a REXX Procedure Library ... 69

Generate a Summary Online Report.. 72

Maintain Analysis Output .. 75

Generate Reports ... 75

Summary Report .. 76

Detailed Report ... 76

Example: Produce Online Reports .. 77

Sample Report .. 78

Chapter 6: REXX External Assembler API 83

REXX and Assembler Programs .. 83

Environmental Considerations ... 84

Make Programs Accessible to CA NetMaster .. 85

External Program Environment .. 86

Provided Control Blocks ... 86

Environment Block (ENVBLOCK) ... 87

8 NetMaster REXX Guide

Table of External Entry Points (EXTE) .. 87

Workblock Extension (WORKBLOCK_EXT) .. 87
Instorage Block (INSTBLK) .. 87

Parameter Block (PARMBLOK) ... 88

Evaluation Block (EVALBLOK) .. 89

Supported Execution Interfaces .. 89

Subcommand Handlers .. 89

External Procedure and Function Handlers .. 90

LINK and ATTACH Handlers .. 91

Entry Points in the EXTE Table ... 91

Chapter 7: Executing NetMaster REXX Procedures Using NCL 95

Execution of REXX Procedures from an NCL Procedure .. 95
Execution of REXX Procedures Through Trouble Tickets ... 95

Appendix A: NCCF Commands 97

Get Help in the NCCF-like Facility .. 97

Supported NCCF Commands ... 98

Supported Command Prefix Label Parameters ...102

Determine Link Names ...102

Get Help About the Command Prefix Label ..102

REXX Commands ..103

Appendix B: REXX Functions 107

REXX Functions ..107

Appendix C: Pipe Stages 111

Pipe Stage Commands ...111

Edit Stage Orders ..116

Appendix D: Hypothetical Case Study—Migrating from Tivoli NetView 123

About the Case Study ..123

The Hypothetical Environment ..124

Composition of the Migration Team ...124

The Migration Plan ...125

Identify the NetView REXX Procedures that Need Migrating126

Prepare the NetView REXX Procedures for Analysis ..127

Analyze the NetView REXX Procedures ..128
Migrate REXX Procedures that Passed Analysis ..131

Contents 9

Migrate REXX Procedures That Contain Only One Unrecognized Entity138

Migrate REXX Procedures That Contain Multiple Unrecognized Entities141
Complete the Migration ...144

Index 147

Chapter 1: Introducing NetMaster REXX 11

Chapter 1: Introducing NetMaster REXX

This section contains the following topics:

About This Guide (see page 11)

NetMaster REXX (see page 12)

NetMaster REXX and TSO/E REXX (see page 13)

Language and Implementation Differences (see page 14)

Keyword Instructions (see page 16)

Built-in Function Support (see page 23)

TSO/E External Functions (see page 24)

Command Descriptions (see page 26)

Control REXX Processes (see page 31)

About This Guide

This guide contains information for experienced REXX programmers who want to

use REXX in a CA NetMaster environment. It provides information about any

differences between NetMaster REXX and IBM‘s REXX to help you maintain and

write REXX procedures. It does not tell you how to write the procedures. It also

describes facilities that help you migrate your existing REXX procedures to work

in the CA NetMaster environment.

NetMaster REXX

12 NetMaster REXX Guide

NetMaster REXX

NetMaster REXX lets you write and execute REXX programs and procedures in

the CA NetMaster environment. This includes REXX programs written specifically

for CA NetMaster, as well as existing REXX programs written to run under IBM

Tivoli NetView for z/OS (Tivoli NetView).

Writing and executing REXX programs and procedures in the CA NetMaster

environment lets you do the following:

■ Customize your product without learning the Network Control Language

(NCL).

■ Write specific monitoring and control procedures in a familiar language.

■ Execute REXX programs written to execute in the Tivoli NetView REXX

environment.

CA NetMaster is not Tivoli NetView, and NetMaster REXX is not Tivoli NetView

REXX; however, CA NetMaster supports emulation of Tivoli NetView facilities.

This can be summarized as follows:

■ In this guide, the term NetView REXX means a REXX executable that is

written to execute under Tivoli NetView

■ By prefixing a NetView REXX command with NV (and a space), you can

execute the command anywhere a NetMaster REXX command can be entered

(including OCS, Command Entry, Operator Console Modify commands, NCL

procedures, and so on).

■ By issuing the NCCF command at the OCS window command prompt, you

can enter an NCCF Emulation mode, whereby all following commands

entered at the OCS screen are treated as NetView REXX commands.

Migration from Tivoli NetView

The provided REXX support can ease migration from Tivoli NetView; however,

the REXX support is not identical to Tivoli NetView, so migration cannot be

accomplished without effort. In some cases, you must modify or rewrite existing

NetView REXX.

Because Tivoli NetView is emulated, differences in program response times may

be apparent. If you use complex PIPE commands, you should run them in CA

NetMaster to evaluate whether there are any specific performance issues. To

address performance issues, you may need to rewrite procedures or replace

them with the code-free facilities of CA NetMaster.

NetMaster REXX and TSO/E REXX

Chapter 1: Introducing NetMaster REXX 13

NetMaster REXX and TSO/E REXX

In z/OS, the typical and most familiar implementation of REXX is the TSO/E REXX

interpreter. This interpreter is also used in other IBM products and environments

such as Tivoli NetView.

The REXX implementation used in CA NetMaster is called NetMaster REXX. It

uses a REXX engine called GREXX. GREXX is a REXX implementation written by

CA.

GREXX is a compiled implementation of REXX. Because GREXX compiles rather

than interprets source, there are differences between the GREXX and TSO/E

implementations of REXX. The differences and similarities are covered in detail in

this chapter.

Libraries and Source Format

TSO/E REXX and NetMaster REXX store the REXX source in libraries known as

partitioned data sets. While TSO/E REXX allows the libraries to have various

record lengths and formats, NetMaster REXX requires the libraries to have a fixed

length of 80 byte records (blocking is allowed).

The source can be numbered. Both implementations use the convention of

examining the first line of the source. If columns 73-80 are numeric, the member

is regarded as numbered, and only columns 1–72 are inspected for valid source.

If columns 73–80 are not all numeric, the member is not regarded as numbered,

and all columns, including 73-80, are regarded as source.

TSO/E REXX normally requires the source libraries to be allocated to the

SYSPROC or SYSEXEC ddname concatenation. NetMaster REXX normally

requires the source libraries to be in the COMMANDS ddname concatenation.

However, this can be overridden for a specific user through the NCL Library

DDNAME UAMS attribute.

Tivoli NetView REXX requires the libraries to be allocated to a specific ddname,

DSICLD.

Language and Implementation Differences

14 NetMaster REXX Guide

REXX Source Recognition

TSO/E and Tivoli NetView recognize REXX as distinct from CLIST, by requiring a

comment on the first line of a procedure that includes the characters REXX.

CA NetMaster also requires a comment in the first line, to enable it to distinguish

REXX source from NCL (and REXX object), but with the following additional rules:

■ The first source line must begin with a REXX comment (that is /*) as the first

non-blank characters on the line.

■ The first non-blank characters after the opening comment must be REXX

(case is unimportant). There must be no embedded blanks in these

characters and these characters must be on the first line.

Compile and Save in Object Form

The NetMaster REXX implementation lets you compile and save REXX programs

in object form. The generated object is also stored in libraries in FB/80 format.

This allows the object to coexist in the same concatenation (COMMANDS) as

source. Standard search order is used to locate a member. The NetMaster REXX

implementation recognizes the object at load time.

Language and Implementation Differences

The following sections describe the differences between TSO/E REXX and

NetMaster REXX. They follow the same order as IBM's TSO/E REXX Reference.

The following chapters from that book are referenced:

■ Chapter 2 - REXX General Concepts

■ Chapter 3 - Keyword Instructions

■ Chapter 4 - Functions

■ Chapter 5 - Parsing

■ Chapter 6 - Numbers and Arithmetic

■ Chapter 7 - Conditions and Condition Traps

Generally, with some exceptions, only differences are mentioned.

Note: The NetMaster REXX implementation was designed to be compliant with

the REXX language as described in the book, The REXX Language: A Practical

Approach to Programming - Second Edition, by Mike Cowlishaw (Prentice Hall).

Language and Implementation Differences

Chapter 1: Introducing NetMaster REXX 15

NetMaster REXX Structure and General Syntax

Relevant issues include:

■ The standard EBCDIC character set is always used for NetMaster REXX

source.

■ Double-Byte Character Support (DBCS) is not supported.

■ Nested comments are supported by NetMaster REXX.

■ Normal, hexadecimal, and binary strings are supported by NetMaster REXX.

Quoted strings that extend across source lines are not normally supported.

■ Tokens, symbols, and so on are supported identically.

The normal REXX language definition does not accept quoted strings that cross

source lines. The IBM TSO/E REXX interpreter has supported this for many years;

however, the support is not consistent, and trailing blanks are not always

accepted. The length of the entire quoted string is still limited to 250 characters.

NetMaster REXX does not accept quoted strings that cross source lines. However,

it provides an option to enable REXX source containing this construct to mostly

compile.

More information:

Libraries and Source Format (see page 13)

REXX Source Recognition (see page 14)

RXCTL (see page 29)

RXCHECK (see page 28)

Expressions and Operators

The difference between NetMaster REXX and TSO/E REXX expressions is the limit

on their length, intermediate value, or result, as follows:

■ TSO/E REXX limits values (intermediate or final) to 16,777,215 characters.

■ NetMaster REXX limits values (intermediate or final) to 32,000 characters.

Note: This is the character representation of the value. (Remember that REXX is

a typeless language. All values are stored in character form.) It does not limit the

mathematical range or value, as long as the value can be represented in 32,000

characters.

The operators /= and /== are supported in TSO/E REXX as alternatives to \= and

\==, respectively. These are not part of the proposed REXX standard and are not

supported by GREXX. Use backslash (\) or not (¬) instead of slash (/).

Keyword Instructions

16 NetMaster REXX Guide

Clauses and Instructions

There are no specific differences here between NetMaster REXX and TSO/E

REXX.

Assignments and Symbols

There are no specific differences here between NetMaster REXX and TSO/E

REXX.

Note: The assigned value of a variable cannot exceed 32,000 characters in

length.

Commands to External Environments

The NetMaster REXX implementation supports some of the external

environments supported by TSO/E REXX and NetView REXX. It also supports

some environments specific to CA NetMaster.

More information:

ADDRESS Environments (see page 33)

Keyword Instructions

This section describes each REXX keyword instruction and lists the NetMaster

REXX differences.

ADDRESS

There are no specific NetMaster REXX issues with the ADDRESS instruction.

More information:

ADDRESS Environments (see page 33)

ARG

There are no specific NetMaster REXX issues with the ARG instruction.

Keyword Instructions

Chapter 1: Introducing NetMaster REXX 17

More information:

PARSE (see page 20)

Parsing (see page 25)

CALL

The CALL instruction is supported. This includes CALL ON/OFF condition support.

In addition, NetMaster REXX has an extension for a standard CALL.

If the name of the program being called is specified in parentheses, then the

name is treated as a simple variable, and the actual program name to be called

is the value of that variable. This allows you to eliminate many uses of the

INTERPRET statement.

For example, in REXX, to call a program that is dynamically named:

PROGRAM = <some name>

INTERPRET 'CALL 'PROGRAM' arg,arg,…'

In NetMaster REXX, you can code instead:

PROGRAM = <some name>

CALL (PROGRAM) arg, arg, …

DO

There are no specific NetMaster REXX issues with the DO instruction.

DROP

There are no specific NetMaster REXX issues with the DROP instruction.

EXIT

There are no specific NetMaster REXX issues with the EXIT instruction. The

Return Value that is displayed at the end of a NetMaster REXX process must be a

valid number that is in the range: -2**32 to 2**32-1. If not, it is ignored.

IF

There are no specific NetMaster REXX issues with the IF instruction.

Keyword Instructions

18 NetMaster REXX Guide

INTERPRET

NetMaster REXX supports the INTERPRET instruction; however, because

NetMaster REXX is a compiler, supporting INTERPRET involves significant

overhead. The entire NetMaster REXX compiler must be used to compile the

value of the expression (after evaluation); therefore, use of INTERPRET is very

expensive.

We recommend that you avoid using INTERPRET wherever possible. For

example, refer to the CALL (see page 17) statement for one NetMaster REXX

extension that can eliminate the use of INTERPRET.

ITERATE

There are no specific NetMaster REXX issues with the ITERATE instruction.

LEAVE

There are no specific NetMaster REXX issues with the LEAVE instruction.

NOP

There are no specific NetMaster REXX issues with the NOP instruction.

NUMERIC

The NUMERIC instruction is supported with the following restrictions:

■ NUMERIC FORM is not supported. A compiler error occurs if a numeric form is

found in the source. NetMaster REXX always behaves as if NUMERIC FORM

SCIENTIFIC is in effect.

■ NUMERIC DIGITS and NUMERIC FUZZ require an operand. To reset to the

default value, you must specify that value. (For example, NUMERIC DIGITS 9

or NUMERIC FUZZ 0.)

Keyword Instructions

Chapter 1: Introducing NetMaster REXX 19

OPTIONS

The OPTIONS instruction is used to provide environment-specific extensions to

REXX. It is followed by an expression that is analyzed by the implementation.

In NetMaster REXX, the OPTIONS expression is ignored at compile time. At

execution time, the expression is evaluated and broken into blank-delimited

tokens. These tokens are then processed as described in the following table.

Note: The REXX language definition says that unrecognized OPTIONS operands

should be ignored. Generally, this is done. However, specification of some

operands in REXX code that normally executes under the TSO/E REXX interpreter

is probably an indication of problems ahead. For example, use of keywords that

imply support for Double Byte Character Sets.

The following table lists recognized tokens from the OPTIONS instruction

expression. All other tokens are ignored.

Token Response

NOETMODE Ignored

NOEXMODE Ignored

ETMODE Error raised (no DBCS support)

EXMODE Error raised (no DBCS support)

NOEMULSAY Disables REXXHELP processing of SAY statements (internal

use only)

EMULSAY Enables REXXHELP processing of SAY statements (internal

use only)

NOEMULTRACE Disables REXXHELP processing of TRACE statements

(internal use only)

EMULTRACE Enables REXXHELP processing of TRACE statements

(internal use only)

NOEXECDUMP No special NetMaster REXX termination dump (internal use

only)

EXECDUMP Special NetMaster REXX termination dump at process end

(internal use only)

MAXSTOR=nK Overrides the SYSPARM-set max storage default

Keyword Instructions

20 NetMaster REXX Guide

PARSE

The PARSE instruction is fully supported by NetMaster REXX with the following

differences:

■ PARSE EXTERNAL is not presently supported. (This is a TSO/E REXX

extension.) You can emulate PARSE EXTERNAL with PARSE PULL when the

stack is empty.

■ PARSE PULL reads from the stack (per TSO/E REXX). If the stack is empty, a

message is sent to the environment (the terminal) requesting input. The GO

command can be used to supply input to the waiting procedure. (This is

similar to the implementation of PARSE PULL in Tivoli NetView.)

■ PARSE NUMERIC is not supported. The three values used as input to the

parsing template are the current settings of NUMERIC DIGITS, NUMERIC

FUZZ, and NUMERIC FORM. The first two (DIGITS and FUZZ) can be obtained

through built-in functions. The last will always be SCIENTIFIC in NetMaster

REXX.

■ PARSE SOURCE provides, as input to the parsing template, a string in the

following format:

GREXX COMMAND PMTGREXX COMMANDS ? PMTGREXX NM NM NM

TSO/E REXX provides a string of the format:

TSO COMMAND PMTGREXX SYS00271 AUDE0.LIB.NCL ? TSO ISPF ?

■ PARSE VERSION provides, as input to the parsing template, a string in the

following format:

REXX/CA 3.92 18 Oct 1995

TSO/E REXX provides a string in the format:

REXX370 3.48 01 May 1992

Keyword Instructions

Chapter 1: Introducing NetMaster REXX 21

The string provided by PARSE SOURCE consists of the following tokens:

■ The string GREXX (IBM provides TSO).

■ The string COMMAND, FUNCTION, SUBROUTINE, or SERVER indicating how

the procedure was invoked. (Currently, NetMaster REXX always uses

SUBROUTINE for a called procedure. It does not distinguish function calls.)

■ The name of the procedure in uppercase.

■ The library ddname (normally COMMANDS).

■ A question mark (in TSO/E REXX, possibly the data set name that the

procedure was loaded from).

■ The procedure name again.

■ Initial (default) command environment (normally NM).

■ Address Space name (normally NM).

■ Parsetok (normally NM).

PROCEDURE

There are no specific NetMaster REXX issues with the PROCEDURE instruction.

PULL

There are no specific NetMaster REXX issues with the PULL instruction. Variable

values (and stack records) in NetMaster REXX are limited to 32000 characters.

PUSH

There are no specific NetMaster REXX issues with the PUSH instruction. Variable

values (and stack records) in NetMaster REXX are limited to 32000 characters.

QUEUE

There are no specific NetMaster REXX issues with the QUEUE instruction.Variable

values (and stack records) in NetMaster REXX are limited to 32000 characters.

Keyword Instructions

22 NetMaster REXX Guide

RETURN

There are no specific NetMaster REXX issues with the RETURN instruction.

For comments regarding the return value from a top-level procedure, see EXIT

(see page 17) instruction.

SAY

There are no specific NetMaster REXX issues with the SAY instruction.

In NetMaster REXX, the destination for the message produced by the SAY

instruction is the environment that the NetMaster REXX procedure is executing

in. For example, if executed from OCS, the destination is the OCS window. If

executed in a background region, for example BSYS, the log is the destination.

SELECT

There are no specific NetMaster REXX issues with the SELECT instruction.

SIGNAL

There are no specific NetMaster REXX issues with the SIGNAL instruction.

Note: All labels referenced in a SIGNAL statement including those implied (for

example, SIGNAL ON NOVALUE) must exist. This applies even if the statement is

not executed. The compiler checks this, and missing labels cause a compilation

failure.

More information:

Conditions and Condition Traps (see page 25)

TRACE

The NetMaster REXX implementation of the TRACE instruction has the following

differences:

■ TRACE S (SCAN) is not supported.

■ The prefix options (?, And, !) are not supported.

■ Interactive debug (TRACE ?) is not supported.

Built-in Function Support

Chapter 1: Introducing NetMaster REXX 23

UPPER

There are no specific NetMaster REXX issues with the UPPER instruction.

Built-in Function Support

The following describes the similarities and differences in built-in function

support in NetMaster REXX.

Generally, functions are supported identically in NetMaster REXX. This includes

the use of internal definitions to replace built-ins, quoted strings as function

names, and so on.

The actual list of built-in functions supported by NetMaster REXX is almost

identical to TSO/E REXX. Because there are many built-in functions, the following

sections list only those that are unsupported, or that have significant issues.

Note: External functions, such as those provided by TSO or Tivoli NetView, are

not explained in the following section.

Built-in

Function

Description

CONDITION S (Status) is not supported. I (Instruction) always returns

SIGNAL.

DBxxxx Because NetMaster REXX does not support DBCS, none of

the DB functions are supported.

ERRORTEXT Ranges 64 to 99 will return NetMaster REXX extended

error message.

EXTERNALS This is not provided by NetMaster REXX. It causes a

compilation error if used in source.

FORMAT NetMaster REXX does not support the expp and expt

arguments. Only a maximum of three arguments are

allowed.

LINESIZE NetMaster REXX always returns 80.

SOURCELINE Only source lines containing REXX code are retained after

compilation. Lines that contain only comments are

treated as blank.

STORAGE NetMaster REXX does not allow use of the STORAGE

function.

TSO/E External Functions

24 NetMaster REXX Guide

Built-in

Function

Description

TIME TIME(R) does not reset the elapsed-time clock.

TRACE The F and S options are not supported, nor are the ! and

? prefixes.

Note: F (Failure) means the same as N (Normal).

More information:

REXX External Assembler API (see page 83)

TSO/E External Functions

The following functions listed in the TSO/E REXX Reference as TSO/E external

functions are not supported by NetMaster REXX:

■ GETMSG

■ LISTDSI

■ MSG

■ MSGVAR

■ OUTTRAP

■ PROMPT

■ SETLANG

■ STORAGE

■ SYSCPUS

■ SYSDSN

■ SYSVAR

TSO/E External Functions

Chapter 1: Introducing NetMaster REXX 25

Parsing

This section describes differences between TSO/E REXX and NetMaster REXX

parsing, as implemented in the ARG (see page 16), PARSE (see page 20), and

PULL (see page 21) instructions.

NetMaster REXX handles all parsing template options as documented by TSO/E

REXX.

The following are some considerations:

■ Relative positional patterns (for example, +35) must have no spaces

between the sign and the number.

■ If breaking a parsing template across source lines, leave a blank after the

last template specification, before the comma that signifies continuation to

the next line.

Numbers and Arithmetic

NetMaster REXX supports numbers with arbitrary precision, as does TSO/E

REXX.

For efficiency, it is best if NUMERIC DIGITS 9 is in effect. Larger values require

the use of slower arithmetic routines. Smaller values do not speed things up.

NetMaster REXX follows the standard REXX rules about preserving trailing zeros

and so on.

NetMaster REXX does not support the NUMERIC FORM statement.

Conditions and Condition Traps

NetMaster REXX supports conditions and condition traps, with the following

considerations:

■ Labels for referenced condition names must be defined. For example,

SIGNAL ON NOVALUE implies a reference to a label named NOVALUE. If this

label is not defined in the source procedure, a compilation error occurs. (If

the NAME option is used on a SIGNAL ON or CALL ON instruction, then the

specified label name must exist instead).

■ CONDITION(I) always returns SIGNAL.

External Programming Interface

NetMaster REXX, like TSO/E REXX, supports an external API.

Command Descriptions

26 NetMaster REXX Guide

More information:

REXX External Assembler API (see page 83)

Command Descriptions

This section describes the NetMaster REXX-related commands that you can issue

from your region. You can issue these commands to execute REXX, or control or

manage the REXX execution environment.

Get Help About a Command

Your region provides online help on commands.

To get help about a command, enter HELP followed by the command at the

command prompt.

The online help for the command appears.

Note: You can also type the command and press F1 to get help.

Example: Get Help About the SHOW REXX Command from OCS

At the command prompt, type HELP SHOW REXX.

SHOW

The SHOW command supports the following operands:

REXX [ALL | USER=userid | ID=n]

Displays a list of executing REXX processes. If no additional operands are

entered, all REXX executing for the current user is assumed. The ALL

operand shows all executing REXX processes. A specific user ID can be

nominated, or a specific NCLID (REXXID) can be used to obtain information

about a specific REXX process.

REXXSTAT [=pattern] [STATS] [DETAILS]

Displays the status of loaded REXX procedures. It includes information and

statistics related to loading and compiling procedures.

The list of procedures can be filtered using a pattern, and additional statistics

are displayed if the STATS option is specified. If you specify DETAILS,

information is displayed about each in-storage procedure, including storage

usage and compilation and load times.

Command Descriptions

Chapter 1: Introducing NetMaster REXX 27

FLUSH

Use the FLUSH command to flush a currently executing NCL or REXX process.

Note: For more information, see the online help.

GO

Use the GO command to provide input data to a REXX process that is waiting on

input.

Note: For more information, see the online help.

LOAD

Use the LOAD command to load REXX procedures into storage for later

execution. Use the LIB option if you want to load from a test library rather than

from the COMMANDS concatenation.

Notes:

■ For more information, see the online help.

■ Preloading procedures that are in use causes the procedures to be marked as

pending-unload. The current users are allowed to keep using the in-storage

copy. New users are directed to a freshly-loaded copy. When all current users

are finished, the old copy is purged.

START

Use the START command to start a REXX process provided that SYSPARMS

AUTOREXX=YES is in effect.

Notes:

■ For more information, see the online help.

■ If SYSPARMS AUTOEXEC=YES is in effect, and if the command does not start

with a recognizable command name, but the first word is a valid PDS

member name, then the command is treated as an implied START command.

Command Descriptions

28 NetMaster REXX Guide

UNLOAD

Use the UNLOAD command to remove the existing version of a procedure from

storage so that a new version can be loaded (for example, after changing the

source on disk).

Note: For more information, see the online help.

REXX

Use the REXX command to explicitly request that a REXX procedure be executed.

This command has the following format:

REXX procname [arguments…]

procname

Specifies the name of the procedure to execute. The procedure name must

be a valid PDS member name.

arguments

Specifies argument string to the REXX procedure.

When a REXX process terminates, a message is issued, indicating the result

(return code).

RXCHECK

Use the RXCHECK command to compile a syntax-check or to load a REXX

program. The command performs the compilation (or load if object) and reports

on the results. However, the generated object code is not retained.

This command has the following format:

RXCHECK procname

 [LIBRARY=libname]

 [LIST | NOLIST]

 [STOP | NOSTOP]

 [WARN | NOWARN]

 [STATS | NOSTATS]

 [QSFIX | NOQSFIX]

procname

Specifies the name of the REXX program to check.

Command Descriptions

Chapter 1: Introducing NetMaster REXX 29

LIBRARY=libname

Specifies the library in which the program is located. For z/OS, this is the

ddname of the PDS concatenation. For VM, it is the file type. If omitted, the

standard library is used.

LIST | NOLIST

Controls the production of a compile listing. Specifying LIST provides a

source listing.

Default: NOLIST

STOP | NOSTOP

Controls whether the compiler attempts to continue after encountering an

error. By default, compilation stops on the first error. Specifying NOSTOP

causes the compiler to attempt to continue to locate additional errors. This

may not be successful. Some errors may cause additional spurious errors as

the compiler attempts to recover, and sometimes an error is fatal.

Default: STOP

WARN | NOWARN

Controls whether warnings are reported.

Default: WARN

STATS | NOSTATS

Controls the production of compilation statistics at the end.

Default: NOSTATS

QSFIX | NOQSFIX

Defaults to the value of the setting of system parameter RXQSFIX. However,

if set, this operand overrides this sysparm setting. Use this operand during

REXX checking.

During RXCHECK processing, if this operand is set to QSFIX, any REXX

source containing a quoted string that extends across lines and is less than

250 bytes in length after trailing blanks have been stripped, is converted. A

warning message is displayed when this processing occurs if WARN (the

default) is specified.

RXCTL

The RXCTL command can be used to do the following:

■ Control currently executing REXX processes.

■ Compile a REXX source procedure and write object out.

Note: For more information, see the online help.

Command Descriptions

30 NetMaster REXX Guide

RXCTL OFFLOAD

Use the RXCTL OFFLOAD command to save a compiled version of a REXX

procedure so that it can be loaded without needing compilation.

This command has the following format:

RXCTL OFFLOAD procname LIB=ddname

 OUT=ddname

 [QSFIX | NOQSFIX]

OFFLOAD

Indicates this is a REXX procedure offload (compile and write object)

request.

procname

Specifies the name of the procedure to compile.

LIB=ddname

Specifies the input library.

Note: There is no default. (The normal source library is ‗COMMANDS‘).

OUT=ddname

Specifies the output library (PDS) to write to. This must be the ddname of an

allocation to a single PDS (not a concatenation), with attributes of F(B),

LRECL=80. The object is written out to the PDS using the same member

name as the input source.

Note: Although the output ddname must be allocated to a single data set,

the same data set can be part of a concatenation (under another ddname).

Important! The output library should not be the same data set as the

source, otherwise the source will be overwritten.

QSFIX | NOQSFIX

Defaults to the value of the setting of system parameter RXQSFIX. However,

if set, this operand overrides this sysparm setting. Use this operand during

REXX checking.

When this operand is set to QSFIX, any REXX source containing a quoted

string that extends across lines and is less than 250 bytes in length after

trailing blanks have been stripped is converted. If WARN (the default) is

specified, a warning message is displayed when this processing occurs.

Control REXX Processes

Chapter 1: Introducing NetMaster REXX 31

Control REXX Processes

You can use the RXCTL command to control currently executing REXX processes.

To do this, use the following syntax:

[RXCTL] { HE | HI | HT | RT | TE | TS }

 [ALL | ID=id]

Note: The six operands, HE, HI, HT, RT, TE, and TS are also defined as

commands. You can use the RXCTL HT or the HT commands; they are the same

command.

These operands are analogous to the TSO/E REXX immediate commands. They

cause an immediate change to the status of a REXX process.

HE

Halts Execution. This halts execution of a REXX process.

HI

Halts Interpretation. This halts interpretation of a REXX process.

HT

Halts Typing. This halts typing and causes all output (SAY and TRACE) to be

discarded.

RT

Resumes Typing. This resumes typing and causes all output (SAY and

TRACE) to be resumed.

Note: TE and TS are recognized but not supported.

If none of the operands listed previously is specified, there must be one active

REXX process in the current environment (window, INTCMD environment). That

process is affected as requested. If there is more than one process, a message is

issued.

If the ALL operand is specified, the RXCTL command affects all REXX processes

executing in the current environment.

If the ID=n operand is specified, the specified REXX process is affected.

Chapter 2: ADDRESS Environments 33

Chapter 2: ADDRESS Environments

More information:

NetMaster REXX Environment (see page 39)

Tivoli NetView Emulation (see page 63)

NCCF Commands (see page 97)

REXX Analyzer (see page 67)

This section contains the following topics:

About ADDRESS Environments (see page 34)

Standard Commands (see page 34)

ADDRESS Environment Descriptions (see page 36)

CA Product Interfaces (see page 37)

About ADDRESS Environments

34 NetMaster REXX Guide

About ADDRESS Environments

NetMaster REXX supports the following ADDRESS environments:

NM

Specifies the CA NetMaster facility environment.

Note: The NM environment also supports the standard commands listed in

Standard Commands (see page 34).

NETVIEW

Specifies the Tivoli NetView emulation environment.

Note: The Tivoli NetView environment also supports the standard

commands listed in Standard Commands (see page 34).

NETVASIS

Specifies another Tivoli NetView emulation environment.

Note: The NETVASIS environment also supports the standard commands

listed in Standard Commands (see page 34).

MVS

Specifies an environment where several base commands are available.

LINK

Links a program.

ATTACH

Attaches a program.

SYSVIEWE

Specifies the CA SYSVIEW interface environment.

CA-7

Specifies the CA 7 WA product interface environment.

CASCHD

Is the CA Scheduler JM product interface environment.

Standard Commands

Some environments supported by NetMaster REXX support the following set of

standard commands.

DELSTACK

Deletes the most recently created stack.

Standard Commands

Chapter 2: ADDRESS Environments 35

DROPBUF

Drops the most recently created stack buffer.

EXECIO (see page 42)

Performs data set I/O.

HT

Halts typing.

MAKEBUF

Makes a buffer.

NEWSTACK

Makes a stack.

QBUF

Queries buffers.

QELEM

Queries elements.

QSTACK

Queries stacks.

RT

Resumes typing.

SLEEP

Waits for a period of time.

SUBCOM

Queries a command environment.

TE

Ends tracing (recognized but not supported).

TS

Starts tracing (recognized but not supported).

Note: For more information about these commands (except for SLEEP), see the

TSO/E REXX Reference.

ADDRESS Environment Descriptions

36 NetMaster REXX Guide

SLEEP REXX Command—Wait for a Specified Period

The SLEEP command suspends the REXX process until the specified period

elapses.

This command has the following format:

SLEEP nnnnn[.nn]

nnnnn[.nn]

Specifies the period in seconds for which the REXX process is suspended.

Range: 0-86400 (24 hours)

Example: You want to suspend the process for half a second and specify the

following:

SLEEP 0.5

The command can return one of the following codes:

0

Indicates that the waiting period has elapsed

-200

Indicates invalid specification.

ADDRESS Environment Descriptions

The following describes the ADDRESS environments supported by NetMaster

REXX.

Note: For more information about these environments, see the TSO/E REXX

Reference.

MVS

In addition to the standard commands (see page 34), MVS supports EX or EXEC

and implied EXEC.

LINK and ATTACH

These environments can be used to call user-written programs. They are

supported as documented in the TSO/E REXX Reference.

Note: The LINKPGM, LINKMVS, ATTCHPGM, and ATTCHMVS ADDRESS

environments are recognized, but not presently supported. Commands

referencing them always return code 3.

CA Product Interfaces

Chapter 2: ADDRESS Environments 37

CA Product Interfaces

The following sections describe the CA product interface ADDRESS

environments that are available to NetMaster REXX provided that the product is

installed and the interface module (GSVXAPIE, CAL2X2WR, or CAJCADDR) is

available in the STEPLIB or JOBLIB concatenation, or through LINKLIST or

LPALIST. The availability is tested during initialization only. If you copy the

module into the load library after initialization, the interface is not available until

you stop and restart the product region.

SYSVIEWE

This ADDRESS environment provides an interface to CA SYSVIEW if it is installed.

The interface module is GSVXAPIE.

Note: For more information, see the CA SYSVIEW documentation.

CA-7

This ADDRESS environment provides an interface to CA 7 WA if it is installed. The

interface module is CAL2X2WR.

Note: For more information, see the CA 7 WA documentation.

CASCHD

This ADDRESS environment provides an interface to CA Scheduler JM if it is

installed. The interface module is CAJCADDR.

Note: For more information, see the CA Scheduler JM documentation.

Chapter 3: NetMaster REXX Environment 39

Chapter 3: NetMaster REXX Environment

This chapter describes the commands in the subcommand environment that

enable REXX programs to interact with CA NetMaster.

This section contains the following topics:

CALL (see page 40)

CMD/COMMAND (see page 41)

EXECIO (see page 42)

GLOBALV (see page 43)

VARTABLE (see page 44)

WRITE (see page 60)

CALL

40 NetMaster REXX Guide

CALL

The CALL command enables REXX to call NCL procedures, including parameters

and shared variables. You must explicitly name any variables that you want to

share. Do not use prefixes.

This command has the following format:

CALL PROC=procname [PARMm=value1,..valuem] [SHAREn=name1,..namen]

PROC=procname

Specifies the PDS member name that contains a valid NCL procedure.

PARMn=value

Specifies a valid REXX variable name.

Range: 1-20

SHAREn=name

Specifies the explicit shared variable name (no ampersand). You can specify

only variables that are valid names in NCL and REXX.

Range: 1-50

Restrictions

■ If the target procedure is NCL, each parameter and input-shared variable‘s

value is limited to 256 characters (NCL restriction).

■ The name of each shared variable must be a valid NCL variable name.

Example: CALL Command

'CALL PROC=$esapi00 PARM1=CLASS=translate PARM2=data=AHRSP’,

 'SHARE1=$ESXLATEFullTxt SHARE2=$ESXLATEShortTxt'

say $ESXLATEFullTxt

say $ESXLATEShortTxt

CMD/COMMAND

Chapter 3: NetMaster REXX Environment 41

CMD/COMMAND

The CMD or COMMAND command enables a REXX procedure to issue a CA

NetMaster command.

This command has the following format:

CMD command_text

or

COMMAND command_text

command_text

Specifies any valid REXX text, variable, or expression containing the

command.

After checking that the required command_text is specified, the command_text

is processed. No validity checking of command_text is performed. No command

execution result is returned, and RC=0 is always returned.

Note: Unlike all other REXX subcommand environments, the CA NetMaster

command always executes asynchronously. Consequently, neither a command

completion message nor a return code is provided. However, you can use the

ADDRESS NETVIEW PIPE NM command to execute these commands and process

their responses.

Example: CMD/COMMAND

trace o

ADDRESS 'NM'

'cmd syscmd d t'

sysc = 'syscmd d a,l'

cmd sysc

EXECIO

42 NetMaster REXX Guide

EXECIO

NetMaster REXX uses the EXECIO command to read and write data to or from a

file. You can use EXECIO to do the following:

■ Read from a data set to the REXX data stack for serialized processing, or to

a list of variables for random processing.

■ Write data to a data set from the REXX data stack or a list of variables.

EXECIO emulates the TSO/E EXECIO command with the following exceptions:

DISKRU

DISKRU is not supported.

DISKW (empty stack for non 3270 session)

If an EXECIO * DISKW command is issued from a non-3270 type session and

the REXX data stack becomes empty before a null record is found (which

would normally terminate EXECIO), then the EXECIO request completes

normally instead of requesting input from an arbitrary input data stream

(because there is no equivalent for SYSTSIN DD in CA NetMaster).

Return Code 4 is not used

TSO/E EXECIO terminates with a return code of 4 when an empty data set is

found within a concatenation list during a DISKR operation. NetMaster REXX

EXECIO does not have that restriction.

Note: for more information about EXECIO, see your IBM TSO/E documentation.

GLOBALV

Chapter 3: NetMaster REXX Environment 43

GLOBALV

The GLOBALV command can be used to set and retrieve the value of an NCL

global variable. These variables are also visible to NCL procedures in the same

region.

This command has the following format:

GLOBALV GET vname|vnmlist

GLOBALV PUT vname|vnmlist

vname

Specifies the variable name. The name must be prefixed with GLBL.

Characters: A-Z,a-z,0-9, $, #, @

Range: The global variable name vname must not be longer than 12

characters. The variable name is not case sensitive. Do not include the

ampersand (&) character.

vnmlist

Specifies a list of variable names, for example, vname[, …vname].

GET

Retrieves the value of the given NCL global variable and assigns it to the

identically named REXX variable.

PUT

Takes the value of the REXX variable and uses it to set the value of the

identical NCL global variable.

If the input variable is not specified, a null value is assigned to the output global

variable. Conversely, the variable name is assigned to the REXX output variable,

per the REXX standard.

Example: GLOBALV

globalv get 'GLBL$RMOSVER'

GLBL$kb3a = GLBL$RMOSVER

globalv put 'GLBL$kb3a'

globalv get 'GLBL$kb3a'

say 'rexxvx=<'||GLBL$kb3a||'>'

VARTABLE

44 NetMaster REXX Guide

VARTABLE

The VARTABLE command allows a REXX procedure to perform most functions of

the VARTABLE NCL verb.

A vartable is a table of variables.

This command can execute one of the following operations:

■ ADD

■ ALLOC

■ DELETE

■ FREE

■ GET

■ PUT

■ QUERY

■ RESET

■ UPDATE

Notes:

■ For information about the VARTABLE NCL verb, see the Network Control

Language Reference.

■ For all VARTABLE actions, the result is returned in RC. The result is equal to

&ZFDBK returned by the execution of the &VARTABLE NCL verb.

VARTABLE

Chapter 3: NetMaster REXX Environment 45

VARTABLE ADD

VARTABLE ADD adds an entry to an existing memory-resident vartable.

This command has the following format:

VARTABLE ADD ID=tablename [SCOPE=scope] KEY=kname

[ADJUST=a|COUNTER=c]

[FIELDS=(fldlist)] [VARS=(varlist)]

ID=tablename

Specifies the name of the vartable.

Characters: A–Z, a–z, 0–9, #, $, and @

Limits: 1–12 characters

SCOPE = {SYSTEM|AOM|GLOBAL|PROCESS|REGION}

Specifies the scope of the vartable.

Default: PROCESS

KEY=kname

Specifies the name of the variable that contains the value of the key to assign

to this table entry.

ADJUST=a

Specifies the value by which to increase or decrease the counter.

COUNTER=c

Specifies the value of the new or updated entry.

FIELDS=fldlist

Specifies the fields to add in the format fname[,…fname].

VARS=varlist

Specifies a list of valid REXX variables that holds values assigned to fldlist. If

fldlist includes DATA*, the associated VARS list entry must be in the format

prefix*. When values are returned, they are in variables prefix1 through

prefixn.

Example: VARTABLE ADD

dt11 = 'kbrxd11'

dt12 = 'kbrxd12'

dt13 = 'kbrxd13'

'vartable add id=rxtest key=secnd scope=region ',

'fields=(data1,data2,data3) vars=(dt11,dt12,dt13)'

say 'kbrexx06_add=<'||RC||'>'

VARTABLE

46 NetMaster REXX Guide

Return Codes

The return codes are as follows:

0

Indicates that the request was satisfied.

1

Indicates that the entry was added successfully. The table was at the limit

specified by the VARTABLE ALLOC, and DELOLD=YES was specified with

VARTABLE ALLOC. The oldest entry was deleted to make room for this entry.

4

Indicates that an entry with that key value already exists.

12

Indicates that the supplied key value was longer than the table key length.

16

Indicates that no table of this name exists in this scope.

24

Indicates that the table is already at the limit specified. The entry could not

be added.

28

Indicates that the variable specified for AOMID is longer than 12 characters.

32

Indicates that SCOPE=AOM table has been disabled due to a storage error.

100

Indicates that the variable specified for AOMATTR is longer than 30

characters.

101 to 130

Indicates that variable specified AOMATTR has an invalid value.

VARTABLE ALLOC

VARTABLE ALLOC defines a new memory-resident vartable. The table, as

defined, contains no entries. After this table is defined, other VARTABLE

operations can refer to the table.

VARTABLE

Chapter 3: NetMaster REXX Environment 47

Specifying USERCORR indicates that the user wants to have synchronized

correlation protection on entries in the vartable. This operand allows control over

the use of the USERCORR field in table entries when performing VARTABLE

UPDATE, VARTABLE DELETE, or VARTABLE PUT operations.

This command has the following format:

VARTABLE ALLOC ID=tablename [SCOPE=scope] [KEYLEN=klen]

[AGE={NO|NEW|ALL|UPDATE|GET}] [DELOLD={NO|YES}]

[KEYFMT=fmt] [DATA=dn] [LIMIT=ln] [USERCORR=NO|YES]

ID=tablename

Specifies the name of the vartable.

Characters: A–Z, a–z, 0–9, #, $, and @

Limits: 1–12 characters

SCOPE = {SYSTEM|AOM|GLOBAL|PROCESS|REGION}

Specifies the scope of the vartable.

Default: PROCESS

KEYLEN=klen

Specifies the length of the keys in this table. Required if keyfmt=CHAR is

specified or assumed.

Range: 1-256

AGE={NO|NEW|ALL|UPDATE|GET}

Specifies whether entries are aged when certain operations are performed on

them.

Default: NO

DELOLD={NO|YES}

Specifies whether VARTABLE ADD and VARTABLE PUT can delete the oldest

entry automatically when the table is full.

Default: NO

KEYFMT={CHAR | NUM}

Specifies whether the table has a numeric or character format.

Default: CHAR

DATA=dn

Specifies how many data fields can be stored in each table entry.

Range: 1-16

Default: 1

VARTABLE

48 NetMaster REXX Guide

LIMIT=ln

Specifies whether the table has a limit on the number of entries.

Range: 0-1,000,000

Default: 0 indicates that the table can have any number of entries.

USERCORR={NO|YES}

Specifies whether the USERCORR field can be used in table entries when

performing VARTABLE UPDATE and VARTABLE PUT operations.

Default: NO

Example: VARTABLE ALLOC

'vartable alloc id=rxtest scope=region keylen=11 data=4 limit=5'

Return Codes

The codes returned are the same as the &ZFDBK values as documented for the

NCL &VARTABLE verb.

The return codes are as follows:

0

Indicates that the request was satisfied.

16

Indicates that no table of this name exists in this scope.

20

Indicates that the maximum number of tables has already been allocated.

24

Indicates that the allocation exceeds the storage allocated for mirroring.

VARTABLE

Chapter 3: NetMaster REXX Environment 49

VARTABLE DELETE

VARTABLE DELETE deletes an entry from an existing memory-resident vartable.

This command has the following format:

VARTABLE DELETE ID=tablename [SCOPE=scope] [KEY=kname]

[FIELDS=(fldlist)VARS=(varlist)]

ID=tablename

Specifies the name of the vartable.

Characters: A–Z, a–z, 0–9, #, $, and @

Limits: 1–12 characters

SCOPE = {SYSTEM|AOM|GLOBAL|PROCESS|REGION}

Specifies the scope of the vartable.

Default: PROCESS

KEY=kname

Specifies the name of the variable that contains the value of the key that

identifies this table entry.

FIELDS=fldlist

Specifies the fields to delete in the format fname[,...fname].

VARS=varlist

Specifies a list of valid REXX variables that holds values assigned to fldlist. If

fldlist includes DATA*, the associated VARS list entry must be in the format

prefix*. When values are returned, they are in variables prefix1 through

prefixn.

Example: VARTABLE DELETE

KEY='KEY001'

'VARTABLE DELETE ID=MYTABLE KEY='||KEY

VARTABLE

50 NetMaster REXX Guide

Return Codes

The codes returned are the same as the &ZFDBK values as documented for the

NCL &VARTABLE verb.

The return codes are as follows:

0

Indicates that the request was satisfied.

4

Indicates that no entry with the requested key value exists.

8

Indicates that an entry with the supplied key value already exists, and the

supplied user correlator value did not match the user correlator value in that

entry.

12

Indicates that the supplied key value was longer than the table key length.

16

Indicates that no table of this name exists in this scope.

32

Indicates that SCOPE=AOM table has been disabled due to a storage error.

VARTABLE

Chapter 3: NetMaster REXX Environment 51

VARTABLE FREE

VARTABLE FREE deletes (frees) an existing memory-resident vartable. Use it to

delete all entries in the table and the table definition itself. It also frees all

storage associated with the table.

This command has the following format:

VARTABLE FREE ID=tablename [SCOPE=scope]

ID=tablename

Specifies the name of the vartable.

Characters: A–Z, a–z, 0–9, #, $, and @

Limits: 1–12 characters

SCOPE = {SYSTEM|AOM|GLOBAL|PROCESS|REGION}

Specifies the scope of the vartable.

Default: PROCESS

Example: VARTABLE FREE

'vartable free id=rxtest scope=region'

Return Codes

The codes returned are the same as the &ZFDBK values as documented for the

NCL &VARTABLE verb.

The return codes are as follows:

0

Indicates that the request was satisfied.

16

Indicates that no table of this name exists in this scope.

20

SCOPE=AOM table was in use at the same time that you attempted to delete

the mirrored copy. The table remains allocated. We recommend that you

retry the operation after one second.

VARTABLE

52 NetMaster REXX Guide

VARTABLE GET

VARTABLE GET retrieves (gets) an entry from an existing memory-resident

vartable. It is not necessary to know the exact key of the record.

This command has the following format:

VARTABLE GET ID=tablename [SCOPE=scope] [KEY=kname]

[AGE={NO|YES}] [DELETE={NO|YES}]

[FIELDS=(fldlist) VARS=(varlist)]

ID=tablename

Specifies the name of the vartable.

Characters: A–Z, a–z, 0–9, #, $, and @

Limits: 1–12 characters

SCOPE = {SYSTEM|AOM|GLOBAL|PROCESS|REGION}

Specifies the scope of the vartable.

Default: PROCESS

KEY=kname

Specifies the name of the variable that contains the value of the key that

identifies this table entry.

AGE={NO|YES}

Specifies whether to make the retrieved entry the newest in the table.

DELETE={NO|YES}

Specifies whether to delete the retrieved entry.

Default: NO

FIELDS=fldlist

Specifies the fields to get in the format fname[,...fname].

VARS=varlist

Specifies a list of valid REXX variables that holds values assigned to fldlist. If

fldlist includes DATA*, the associated VARS list entry must be in the format

prefix*. When values are returned, they are in variables prefix1 through

prefixn.

VARTABLE

Chapter 3: NetMaster REXX Environment 53

Example: VARTABLE GET

/* get the stem of IP connections from $IPLINK vartable */

lk.0 = 0

lk.1 = 'a'

'vartable query id=$IPLINKS scope=system fields=(total) vars=(lk.0)'

If RC = 0 Then Do i = 1 to lk.0

 'vartable get id=$IPLINKS scope=system fields=(key) vars=(lk.i) ',

 'opt=KGT key="'lk.i'"'

End

Return Codes

The codes returned are the same as the &ZFDBK values as documented for the

NCL &VARTABLE verb.

The return codes are as follows:

0

Indicates that the request was satisfied.

4

Indicates that no entry with the requested key value exists.

12

Indicates that the supplied key value was longer than the table key length.

16

Indicates that no table of this name exists in this scope.

32

Indicates that SCOPE=AOM table has been disabled due to a storage error.

VARTABLE

54 NetMaster REXX Guide

VARTABLE PUT

VARTABLE PUT adds to or updates an entry in an existing memory-resident

vartable. If there is no entry with a matching key, the entry is added. If an entry

with a matching key already exists, the entry is updated.

The PUT operation can occur concurrently with vartable updating in other

processes. If you want to delete or update a vartable entry, you should use a

correlator to synchronize any accesses to the entry.

This command has the following format:

VARTABLE PUT ID=tablename KEY=kname [SCOPE=scope]

[ADJUST=a|COUNTER=c]

[FIELDS=(fldlist) VARS=(varlist)]

ID=tablename

Specifies the name of the vartable.

Characters: A–Z, a–z, 0–9, #, $, and @

Limits: 1–12 characters

SCOPE = {SYSTEM|AOM|GLOBAL|PROCESS|REGION}

Specifies the scope of the vartable.

Default: PROCESS

KEY=kname

Specifies the name of the variable that contains the value of the key that

identifies this table entry.

ADJUST=a

Specifies the value by which to increase or decrease the counter.

COUNTER=c

Specifies the value of the new or updated entry.

FIELDS=fldlist

Specifies the fields to put in the format fname[,...fname].

VARS=varlist

Specifies a list of valid REXX variables that holds values assigned to fldlist. If

fldlist includes DATA*, the associated VARS list entry must be in the format

prefix*. When values are returned, they are in variables prefix1 through

prefixn.

Example: VARTABLE PUT

'vartable put id=rxtest key=myrexx scope=region ',

'fields=(data4) vars=(dta4)'

VARTABLE

Chapter 3: NetMaster REXX Environment 55

More information:

VARTABLE GET (see page 52)

Return Codes

The codes returned are the same as the &ZFDBK values as documented for the

NCL &VARTABLE verb.

The return codes are as follows:

0

Indicates that the request was satisfied.

1

Indicates that the entry was added successfully. The table was at the limit

specified by the VARTABLE ALLOC, and DELOLD=YES was specified with

VARTABLE ALLOC. The oldest entry was deleted to make room for this entry.

8

Indicates that an entry with the supplied key value already exists, and the

supplied user correlator value did not match the user correlator value in that

entry.

12

Indicates that the supplied key value was longer than the table key length.

16

Indicates that no table of this name exists in this scope.

20

Indicates that the table was allocated with USERCORR=YES specified, and no

user correlator was supplied.

28

Indicates that the variable specified for AOMID is longer than 12 characters.

32

Indicates that SCOPE=AOM table has been disabled due to a storage error.

100

Indicates that the variable specified for AOMATTR is longer than 30

characters.

101 to 130

Indicates that variable specified AOMATTR has an invalid value.

VARTABLE

56 NetMaster REXX Guide

VARTABLE QUERY

VARTABLE QUERY obtains information about a memory-resident vartable. You

use it to inquire about the existence of a given vartable. If it exists, you can

optionally retrieve attribute information.

This command has the following format:

VARTABLE QUERY ID=tablename [SCOPE=scope]

[FIELDS=(fldlist) VARS=(varlist)]

ID=tablename

Specifies the name of the vartable.

Characters: A–Z, a–z, 0–9, #, $, and @

Limits: 1–12 characters

SCOPE = {SYSTEM|AOM|GLOBAL|PROCESS|REGION}

Specifies the scope of the vartable.

Default: PROCESS

FIELDS=fldlist

Specifies the information that you want returned in the format

fname[,...fname].

Valid Values: keylen, age, delold, data, limit, usercorr, total

VARS=varlist

Specifies a list of valid REXX variables that holds values assigned to fldlist. If

fldlist includes DATA*, the associated VARS list entry must be in the format

prefix*. When values are returned, they are in variables prefix1 through

prefixn.

Example: VARTABLE QUERY

'vartable query id=rxtest scope=region ',

'fields=(keylen,limit,delold) vars=(klen,lmt,dlo)'

say 'kbrexx06_klen=<'||klen||'><'||lmt||'><'||dlo||'>'

VARTABLE

Chapter 3: NetMaster REXX Environment 57

Return Codes

The codes returned are the same as the &ZFDBK values as documented for the

NCL &VARTABLE verb.

The return codes are as follows:

0

Indicates that the request was satisfied.

16

Indicates that no table of this name exists in this scope.

VARTABLE RESET

VARTABLE RESET deletes all entries from an existing memory-resident vartable.

It lets you delete multiple entries from an existing vartable while preserving its

definition.

This command has the following format:

VARTABLE RESET ID=tablename [SCOPE=scope]

[OLDEST=n | NEWEST=n]

ID=tablename

Specifies the name of the vartable.

Characters: A–Z, a–z, 0–9, #, $, and @

Limits: 1–12 characters

SCOPE = {SYSTEM|AOM|GLOBAL|PROCESS|REGION}

Specifies the scope of the vartable.

Default: PROCESS

OLDEST=n

Specifies the number of oldest entries to delete.

NEWEST=n

Specifies the number of newest entries to delete.

Example: VARTABLE RESET

'vartable reset id=rxtest scope=region'

VARTABLE

58 NetMaster REXX Guide

Return Codes

The codes returned are the same as the &ZFDBK values as documented for the

NCL &VARTABLE verb.

The return codes are as follows:

0

Indicates that the request was satisfied.

16

Indicates that no table of this name exists in this scope.

20

SCOPE=AOM table in use at the same time that you attempted to delete the

mirrored copy. The table remains allocated. We recommend that you retry

the operation after one second.

VARTABLE UPDATE

VARTABLE UPDATE updates an entry in an existing memory-resident vartable.

The update operation can occur concurrently with vartable updating in other

processes. If you want to delete or update a vartable entry, you should use a

correlator to synchronize any accesses to the entry.

This command has the following format:

VARTABLE UPDATE ID=tablename [SCOPE=scope] KEY=kname

[ADJUST=a|COUNTER=c]

[FIELDS=(fldlist) VARS=(varlist)]

ID=tablename

Specifies the name of the vartable.

Characters: A–Z, a–z, 0–9, #, $, and @

Limits: 1–12 characters

SCOPE = {SYSTEM|AOM|GLOBAL|PROCESS|REGION}

Specifies the scope of the vartable.

Default: PROCESS

KEY=kname

Specifies the name of the variable that contains the value of the key that

identifies this table entry.

ADJUST=a

Specifies the value by which to increase or decrease the counter.

VARTABLE

Chapter 3: NetMaster REXX Environment 59

COUNTER=c

Specifies the value of the new or updated entry.

FIELDS=fldlist

Specifies the fields to update in the format fname[,...fname].

VARS=varlist

Specifies a list of valid REXX variables that holds values assigned to fldlist. If

fldlist includes DATA*, the associated VARS list entry must be in the format

prefix*. When values are returned, they are in variables prefix1 through

prefixn.

Example: VARTABLE UPDATE

'vartable update id=rxtest key=secnd scope=region ',

'fields=(data1,data2,data3) vars=(dt11,dt12,dt13) ',

'adjust=15'

Return Codes

The codes returned are the same as the &ZFDBK values as documented for the

NCL &VARTABLE verb.

The return codes are as follows:

0

Indicates that the request was satisfied.

4

Indicates that no entry with the requested key value exists.

8

Indicates that an entry with the supplied key value already exists, and the

supplied user correlator value did not match the user correlator value in that

entry.

12

Indicates that the supplied key value was longer than the table key length.

16

Indicates that no table of this name exists in this scope.

20

Indicates that the table was allocated with USERCORR=YES specified, and no

user correlator was supplied.

28

Indicates that the variable specified for AOMID is longer than 12 characters.

WRITE

60 NetMaster REXX Guide

32

Indicates that SCOPE=AOM table has been disabled due to a storage error.

100

Indicates that the variable specified for AOMATTR is longer than 30

characters.

101 to 130

Indicates that variable specified AOMATTR has an invalid value.

WRITE

The WRITE command lets you issue messages to various destinations. It has

more flexibility than the standard REXX SAY statement.

This command has the following format:

WRITE

 [LOG={NO|YES}]

 [TERM={NO|YES}]

 [MON={NO|YES}]

 [{COLOR|COLOUR}=color]

 [{HLIGHT|HLITE}=hlight]

 [ALARM={NO|YES}]

 [INTENS={LOW|HIGH}]

 DATA="wtext"

LOG={NO | YES}

Specifies whether to write the message to the activity log.

Default: NO

TERM={NO | YES}

Specifies whether to write the message to the owning environment.

Default: YES

MON={NO | YES}

Specifies whether to write the message to all OCS users and dependent

environments profiled to receive Monitor class messages.

Default: YES

COLOR|COLOUR={BLUE|GREEN|PINK|RED|TURQUOISE|WHITE|YELLO

W|NONE}

Specifies the color of the message.

HLIGHT|HLITE={BLINK|REVERSE|USCORE|NONE}

Specifies the extended highlighting of the message.

WRITE

Chapter 3: NetMaster REXX Environment 61

ALARM={NO | YES}

Specifies whether to ring the terminal alarm when displayed on an OCS

window.

Default: NO

INTENS={NORMAL | HIGH}

Specifies whether to display the message in high or normal intensity.

Default: NORMAL

DATA="wtext"

Specifies the text to display on the terminal.

Example: WRITE

ADDRESS 'NM'

'WRITE LOG=YES DATA="a message from REXX to the log"'

'WRITE LOG=YES TERM=YES COLOR=RED DATA="Hello World from NM rexx!"'

'WRITE LOG=NO TERM=YES COLOR=GREEN HLITE=REVERSE INTENS=HIGH',

'DATA="This should be green, intensive and reverse!"'

attr=' COLOR=PINK HLITE=REVERSE'

line=" DATA='This should be pink, intensive and reverse!'"

'WRITE LOG=NO TERM=YES'attr||line

allarg=' COLOR=GREEN DATA="This should be just green"'

WRITE allarg

WRITE

62 NetMaster REXX Guide

Return Codes

The return codes are as follows:

0

Indicates that the request was satisfied.

4

Indicates that the target was a closed OCS window.

8

Indicates that the LUNAME specified was not available.

12

Indicates that the USERID or LUNAME specified was not in OCS mode.

16

Indicates that the target was not found in the System Services domain.

24

Indicates that the destination procedure was at queue limit or the storage

limit was reached.

28

Indicates that the target for a TYPE=REQ request was not an NCL procedure.

32

Indicates that the contents of the source MDO exceeds the maximum

allowable size.

Chapter 4: Tivoli NetView Emulation 63

Chapter 4: Tivoli NetView Emulation

More information:

NCCF Commands (see page 97)

REXX Analyzer (see page 67)

This section contains the following topics:

About Tivoli NetView Emulation (see page 63)

General REXX Execution (see page 64)

Supported Address Environments (see page 64)

Supported External Functions (see page 65)

Locate the Tivoli NetView Data Sets Required by Emulation (see page 65)

About Tivoli NetView Emulation

NetMaster REXX provides a Tivoli NetView emulation facility that provides an

environment to enable a significant number of NetView REXX procedures to run

unchanged under CA NetMaster.

This is achieved through the following:

■ Support of the NETVIEW and NETVASIS ADDRESS environments.

■ Emulation of many NetView REXX commands, including several that are

available only to REXX programs.

In addition, an NCCF emulation facility lets you enter NetView REXX commands

and procedure names at a user terminal, and have them correctly processed,

even if they have the same name as CA NetMaster commands.

To help you move REXX programs from Tivoli NetView, a REXX analyzer facility is

provided.

General REXX Execution

64 NetMaster REXX Guide

General REXX Execution

In Tivoli NetView, libraries containing REXX source must be allocated to the

DSICLD ddname.

In CA NetMaster, the REXX libraries are allocated to the COMMANDS ddname by

default, although the actual library name can be overridden at the user level

using the NCL Library DDNAME UAMS attribute.

All NetMaster REXX libraries must be F(B), 80-character records.

By default, any REXX procedure executed in CA NetMaster executes with

ADDRESS NM as the default address environment. This means that a procedure

that expects a Tivoli NetView environment does not work correctly.

To execute a NetView REXX procedure from OCS or command entry, prefix the

procedure name with NV. For example, NV STATCHK PU27 executes the

STATCHK procedure in a Tivoli NetViewemulation environment.

Note: The NV prefix is not valid in the NCCF emulation facility. All commands

entered under this facility are assumed to be Tivoli NetView commands or

procedures. If you want to use the CA NetMaster environment from a NetView

REXX procedure, you can specify ADDRESS NM. To revert to the Tivoli

NetViewenvironment, specify ADDRESS NETVIEW.

Supported Address Environments

NetMaster REXX supports ADDRESS NETVIEW and ADDRESS NETVASIS. These

environments enable these programs to execute NetView REXX commands.

While NetMaster REXX supports these environments, not all commands are

supported.

These address environments support all of the standard commands (such as

NEWSTACK and EXECIO).

Note: NetMaster REXX does not support the ADDRESS NETVDATA (data REXX)

environment.

More information:

NCCF Commands (see page 97)

ADDRESS Environments (see page 33)

Supported External Functions

Chapter 4: Tivoli NetView Emulation 65

Supported External Functions

NetMaster REXX recognizes all documented NetView REXX external functions.

However, not all functions are fully supported.

More information:

REXX External Assembler API (see page 83)

Locate the Tivoli NetView Data Sets Required by Emulation

If you are using a customized command characteristics definition (CCDEF) table

or if you need to emulate the VIEW command, the region requires the data sets

that contain the Tivoli NetView system definitions and panels.

To locate the Tivoli NetView data sets required by emulation in a region

1. Enter /PARMS at the prompt.

The parameter groups appear.

2. Enter F NETVEMLDSN at the Command prompt.

The cursor locates the parameter group for the data sets.

3. Enter U beside the group.

The Parameter Group panel appears.

4. Specify the data sets required by the region, and then press F6 (Action).

The specified data sets become known to the region.

5. Press F3 (File).

The group settings are saved and will be applied each time the region starts.

Chapter 5: REXX Analyzer 67

Chapter 5: REXX Analyzer

This section contains the following topics:

About the REXX Analyzer (see page 67)

REXX Analyzer Processing (see page 67)

Using the REXX Analyzer (see page 68)

Generate Reports (see page 75)

About the REXX Analyzer

The REXX Analyzer lets you analyze and generate reports on your existing REXX

libraries. The REXX Analyzer provides information about your existing NetView

REXX procedures to help you migrate from Tivoli NetView.

REXX Analyzer Processing

REXX Analyzer processing comprises the following logical processes:

■ Analysis process

■ Report generation process

Analysis Process

The analysis process analyzes a specified input data set that contains your REXX

procedures and writes the output to a member in a preallocated analysis output

data set. Each time analysis is run, a new member is created. The report

generation process uses the information stored in the member to generate a

REXX Analysis report.

You can analyze different REXX procedure data sets. An analysis member is

created for each analyzed REXX procedure data set. You can perform different

types of analysis on each REXX procedure data set.

You may need to reanalyze a procedure to account for different REXX procedure

formats. There may be instances where your REXX procedure is not identified

with a /* REXX*/ in the first line of the procedure, or you may be unsure of what

procedures you have in your REXX procedure data set. You can use different

Scan Types to identify what is, or is not, a REXX procedure. Only those

procedures that pass scan processing are analyzed.

Using the REXX Analyzer

68 NetMaster REXX Guide

Report Generation Process

The report generation process uses an analysis member to build the report.

The analysis member is read during the report generation process, and

information stored in this member is used to build the report.

Procedures That Passed Analysis

Some procedures that contain only recognized entities may still require

additional work for the following reasons:

■ There are differences (see page 13) between the GREXX compiler and the

IBM REXX Interpreter.

■ Not all parameters are supported.

Note: The online help in the NCCF-like facility (see page 97) contains more

information about the supported parameters.

Using the REXX Analyzer

The REXX Analyzer has a panel-driven user interface that is accessed from your

CA NetMaster region.

Note: For more information about criteria fields and report data, see the online

help.

Access the Primary Menu

To access the Primary Menu, enter /REXXAN at the prompt.

The following panel appears:

 NMPROD------------------ REXX Analyzer : Primary Menu ------------------/REXXAN
 Select Option ===>

 A - Analyze REXX
 G - Generate Report
 M - Maintain Analysis Output
 X - Exit

Note: For more information, press F1 (Help).

Using the REXX Analyzer

Chapter 5: REXX Analyzer 69

Analyze a REXX Procedure Library

To analyze a REXX procedure library

1. Enter A from the REXX Analyzer Primary Menu.

The following panel appears:

 NMPROD--------------- REXX Analyzer : Analysis Criteria -----------------------
 Command ===> Function=Analyze

 Scan Type+ REXXONLY
 Do you use CA-PDSMAN? YES (Yes/No)

 Member Details (Comma delimited)
 Include Member List ..

 Exclude Member List ..

 Data Set Details
 Input Data Set
 Output Data Set AUDE0.NMPROD.REXXAN

 NetView Details (REXX usage)
 System Name SYS1
 Running STC Name NETV1

 F1=Help F2=Split F3=Exit F6=Action
 F9=Swap

Using the REXX Analyzer

70 NetMaster REXX Guide

2. Specify the REXX procedure data set name in the Input Data Set field and

other criteria as required, and then press F6 (Action) to proceed with analysis

processing.

Note: Ensure your region has read access to the input data set.

The following panel appears:

 NMPROD------------- REXX Analyzer : Analysis Confirmation ---------------------
 Command ===> Function=Confirm

 |---|
 | |
 | Analysis run confirmation |
 | |
 | |
 | |
 | Press F6 to confirm or F12 to cancel |
 | |
 '---'

 F1=Help F2=Split F6=Confirm
 F9=Swap F12=Cancel

Using the REXX Analyzer

Chapter 5: REXX Analyzer 71

3. Press F6 (Confirm).

The following panel, showing analysis progress, appears:

 NMPROD---------------- REXX Analyzer : Analysis Progress ----------------------
 Command ===> Function=Analysis

 . REXX Analysis Progress ---.
 | |
 | RXSA0024 Finished Analysis of member: TESTIP2 |
 | |
 | Member 2 being processed |
 | |
 '---'

 . Total Members Processed --.
 | |
 | |
 | 0|||||||||||||||||||||||||||||||||||| 3 |
 | |
 | |
 | |
'---'

When the analysis is complete, the following panel appears:

 NMPROD------------- REXX Analyzer : Analysis Confirmation ---------------------
 Command ===> Function=Confirm
 RXSA0001 REXX Analysis completed successfully
 .---.
 | |
 | Analysis run confirmation |
 | |
 | RXSA0012 Output member for this Analysis run is: A9999871 |
 | |
 | Analysis complete, press F3 to exit or F5 to generate a Report |
 | |
 '---'

 F1=Help F2=Split F3=Exit F5=GenReport
 F9=Swap

Using the REXX Analyzer

72 NetMaster REXX Guide

4. From the Analysis Confirmation panel, you can do one of the following:

■ Press F3 (Exit) to return to the Analysis Criteria panel to run analysis on

another REXX procedure data set.

■ Press F5 (GenReport) to produce a report from the generated analysis

member.

Generate a Summary Online Report

To generate a summary online report

1. Do one of the following:

■ Enter G from the Primary Menu

■ Press F5 (GenReport) from the Analysis Confirmation panel.

The following panel appears. The Report Type and Output Type fields specify

a summary online report.

 NMPROD---------------- REXX Analyzer : Report Criteria ------------------------
 Command ===> Function=Report

 Report Type SUMMARY_ (Summary or Detailed)

 Report ID NETVIEW_

 Output Type ONLINE (DSN or Online)
 Member Selection+ LAST____
 Suppression Character ... ?
 Input Data Set AUDE0.NMPROD.REXXAN_________________________

 Required if Output Type is DSN
 Output Data Set __
 Print Control+ NONE
 Line Count 55__

 F1=Help F2=Split F3=Exit F6=Action
 F9=Swap

Using the REXX Analyzer

Chapter 5: REXX Analyzer 73

2. Press F6 (Action).

The following panel appears:

 NMPROD-------------- REXX Analyzer : Report Confirmation ----------------------
 Command ===> Function=Confirm

 .---.
 | |
 | Report run confirmation |
 | |
 | |
 | Press F6 to confirm or F12 to cancel |
 | |
 '---'

 F1=Help F2=Split F6=Confirm
 F9=Swap F12=Cancel

3. Press F6 (Confirm).

The following panel, showing report generation progress, appears:

 NMPROD---------------- REXX Analyzer : Report Progress ------------------------
 Command ===> Function=Report

 . REXX Analysis Progress ---.
 | |
 | Generating Report - 880 member records processed |
 '---'

 . Progress ---.
 | |
 | Rexx External Functions |
 | 0 1250 2500 3750 5000 |
 | |
 | Rexx External Procedures |
 | 0 1250 2500 3750 5000 |
 | |
 | Command Names |
 | 0 1250 2500 3750 5000 |
 | |
 | Pipe Stages (1717 Pipe Stage(s) processed) |
 | 0 1250 2500 3750 5000 |
 | ||||||||||||||||||||||||||||| |
'---'

Using the REXX Analyzer

74 NetMaster REXX Guide

When online report generation is complete, the Online Report panel appears:

********************************* TOP OF DATA *********************************
 2006/03/30 00:38:13 REXX Analyzer SUMMARY Report

 Report Input Details

 ID: NETVIEW

 REXX Procedure Data Set: AUDE0.QAREXXAN.EXEC

 Analysis Input Data Set: AUDE0.NMPROD.REXXAN

 Analysis Member: A9999839

 Date Analyzed: 26 MAR 2006

 Time Analyzed: 20:20:34

4. Press F3 (Exit).

The following panel appears:

 NMPROD-------------- REXX Analyzer : Report Confirmation ----------------------
 Command ===> Function=Confirm
 RXSR0021 Report Generation completed successfully
 .---.
 | |
 | Report run confirmation |
 | |
 | |
 | Report complete, press F3 to exit |
 | |
 '---'

 F1=Help F2=Split F3=Exit
 F9=Swap

5. From the Report Confirmation panel, you can do one of the following:

■ Press F3 (Exit) to return to the Report Criteria panel to generate another

report.

■ Press F3 (Exit) twice to return to the Primary Menu.

Generate Reports

Chapter 5: REXX Analyzer 75

Maintain Analysis Output

During REXX analysis, an output member is generated. The M - Maintain Analysis

Output option on the Primary Menu lets you view existing members and delete

any that you no longer require. The listed members are those members that

reside in the last used analysis output data set.

When you enter M from the Primary Menu, a list similar to the following appears:

 D=Delete
 Member Created REXX Input Data Set
 A9999870 23 JUN 2006 AUDE0.NMPROD.REXX.ANALYZER.SCAN.INPUT
 A9999871 23 JUN 2006 AUDE0.NMPROD.REXX.ANALYZER.SCAN.INPUT
 A9999872 23 JUN 2006 AUDE0.NMPROD.EXEC
 A9999873 23 JUN 2006 AUDE0.NMPROD.REXX.ANALYZER.SCAN.INPUT1
 A9999874 23 JUN 2006 AUDE0.NMPROD.REXX.ANALYZER.SCAN.INPUT
 A9999875 21 JUN 2006 AUDE0.NMPROD.REXX.ANALYZER.SCAN.INPUT
 A9999876 21 JUN 2006 AUDE0.NMPROD.REXX.ANALYZER.SCAN.INPUT
 A9999877 21 JUN 2006 AUDE0.NMPROD.REXX.ANALYZER.SCAN.INPUT
 A9999878 20 JUN 2006 AUDE0.NMPROD.REXX.ANALYZER.SCAN.INPUT
 A9999879 20 JUN 2006 AUDE0.NMPROD.REXX.ANALYZER.SCAN.INPUT
 A9999880 20 JUN 2006 AUDE0.NMPROD.REXX.ANALYZER.SCAN.INPUT
 A9999881 20 JUN 2006 AUDE0.NMPROD.REXX.ANALYZER.SCAN.INPUT
 A9999882 20 JUN 2006 AUDE0.NMPROD.REXX.ANALYZER.SCAN.INPUT
 A9999883 20 JUN 2006 AUDE0.NMPROD.REXX.ANALYZER.SCAN.INPUT
 A9999884 20 JUN 2006 AUDE0.NMPROD.REXX.ANALYZER.SCAN.INPUT
 A9999885 26 MAY 2006 AUDE0.NMPROD.REXX
 F1=Help F2=Split F3=Exit F4=Return F5=Find F6=Refresh
 F7=Backward F8=Forward F9=Swap F11=Right

Generate Reports

You can generate summary and detailed reports from the Generate Report

option, and then display the reports online or save them to a data set.

The summary report provides sufficient information to help you prioritize the

migration of your NetView REXX procedures. The detailed report provides

additional information to help you understand what facilities your REXX

procedures are using.

Specify your reporting criteria through the REXX Analyzer Report Criteria Panel.

Note: For more information about the fields on the REXX Analyzer Report

Criteria panel, see the online help.

Generate Reports

76 NetMaster REXX Guide

Summary Report

A summary report provides the following information:

■ Report input details

■ Information to prioritize your Tivoli NetView REXX migration

Detailed Report

A detailed report provides the following information:

■ Report input details

■ REXX source error list

■ GREXX compatibility issues

■ REXX statement usage

■ ADDRESS SUBCOM name

■ Normalized command name (in ascending order by name)

■ Normalized command name (in descending order by number of referencing

procedures)

■ Full command list

■ External procedure references (in ascending order by name)

■ External procedure references (in descending order by number of

referencing procedures)

■ External function references (in ascending order by name)

■ External function references (in descending order by number of referencing

procedures)

■ INTERPRET statement expressions

■ Pipe stage usage (in ascending order by name)

■ Pipe stage usage (in descending order by number of referencing procedures)

■ Information to prioritize your Tivoli NetView REXX migration

Generate Reports

Chapter 5: REXX Analyzer 77

Example: Produce Online Reports

The following example shows how to produce an online report.

In this example, you process a single input REXX procedure library

(AUDE0.QAREXXAN.EXEC). The library contains 31 REXX procedures. Some

include deliberate syntax errors, unrecognized commands, functions, or pipe

stages statements.

Note: The reports shown in this section may not be typical reports, but they

illustrate most of the principal features of the online report.

Perform the Analysis

To produce the sample output

1. From the REXX Analyzer : Primary Menu, enter A.

The Analysis Criteria panel appears.

2. Specify AUDE0.QAREXXAN.EXEC in the Input Data Set field. Use the

default values for the other fields.

Important! Your region must have read access to the input data set.

Press F6 (Action).

3. Press F6 (Confirm).

A message appears on the Analysis Confirmation panel indicating the REXX

Analysis completed successfully.

Generate an Online Summary Report

To generate an online summary report

1. Press F5 (GenReport) from the Analysis Confirmation panel. You can change

the default suppression character, if required.

2. Press F6 (Action).

3. Press F6 (Confirm).

An online summary report appears.

Generate Reports

78 NetMaster REXX Guide

Sample Report

The report that you generate using the REXX Analyzer provides sufficient

information to let you prioritize the migration of your NetView REXX procedures.

When you produce an online report, press F8 (Forward) to scroll forward and

view the various report sections.

The sample summary online report contains the following sections:

■ Report Input Details (see page 78)

■ Information to Prioritize Your Tivoli NetView REXX Migration (see page 79)

Report Input Details

The Report Input Details section shows the details of the resources used as input

to the report:

 Report Input Details

ID: NETVIEW

REXX Procedure Data Set: AUDE0.QAREXXAN.EXEC

Analysis Input Data Set: AUDE0.NMPROD.REXXAN

Analysis Member: A9999839

Date Analyzed: 26 MAR 2006

Time Analyzed: 20:20:34

Analyzed on System: SYS1

Members Scanned: 31

Members Analyzed: 31

ID

Displays the report ID specified during report generation.

REXX Procedure Data Set

ldentifies the REXX procedure data set that was analyzed.

Analysis Input Data Set

Identifies the data set in which the analysis output was saved.

Analysis Member

Identifies the member generated during the analysis that is used as input to

this report.

Generate Reports

Chapter 5: REXX Analyzer 79

Date Analyzed

Identifies the date the analysis process was run.

Time Analyzed

Identifies the time the analysis process was run.

Analyzed on System

Identifies the system on which the analysis was performed.

Members Scanned

Displays the number of procedures in the REXX procedure data set that were

scanned during the analysis process.

Members Analyzed

Displays the number of procedures that passed analysis scan processing and

were analyzed.

Information to Prioritize Your Tivoli NetView REXX Migration

This section of the report provides the following information that helps you to

prioritize the migration of your NetView REXX procedures:

Results at a Glance

Displays the number of procedures that passed analysis and the number of

procedures that failed.

Example: Results at a Glance

Results at a Glance

 22 procedures passed analysis.
 8 procedures failed analysis.

Explanatory Notes

Explains the information in the remainder of the summary report.

Recognized Command List

Identifies the NetView REXX commands that are emulated.

Recognized Pipe Stage Command List

Identifies the NetView REXX pipe stage commands that are emulated.

Recognized External Functions List

Identifies the NetView REXX functions that are emulated.

Generate Reports

80 NetMaster REXX Guide

List of Procedure that Pass Analysis

Lists the recognized NetView REXX entities that have been emulated. Some

procedures that contain recognized entities may still not run and could

require updating to account for unsupported operands and GREXX

compatibility issues.

Example: List of Procedures that Pass Analysis

List of Procedures that Pass Analysis (Total=22)
__

 DEBUG SETU0001 TDRCI01 TDRCI04 TDRCI05
 TDRCS01 TDRSE01 TDRXF01 TDRXF10 TDRXF20
 TDRXF21 TDRXF22 TDRXP01 TDRXP10 TDRXP50
 TDRXP51 TDRXP52 TDRXP60 ZSLECHGF ZSLEPAR
 ZSLTRACE ZSWELDG

List of Procedures that Fail Analysis

Lists procedures that contain unrecognized entities. You can use this list to

prioritize procedure updates.

Example: List of Procedures that Fail Analysis

Unrecog. Procedure Entity

 1 PNS0002 Commands: %LISTA

 1 SUB001 Commands: AUTOTASK

 1 TDRSE03 Pipe Stages: SQL

 1 TDRXP20 Pipe Stages: UNIX

 1 TDRXP70 Commands: @EXTRN01

 1 ZSLEAAGD Commands: EZLEASLN

 3 CNMU0001 Commands: ASSIGN AUTOTASK START

 13 PNS0001 Commands: ACQ ACTION ADAPTER ALERTSD
 AON AONENABL APPN ASSIGN
 ATTACH BGNSESS BRIDGE BROADCAST
 CANCEL

Unrecog.

Displays the number of unrecognized entities in a procedure.

Procedure

Identifies the procedure containing the unrecognized entities.

Generate Reports

Chapter 5: REXX Analyzer 81

Entity

Identifies the entities that are not recognized. One or more of the

following labels can be displayed:

■ Commands—This label is displayed if a procedure contains

commands that are not recognized.

■ Functions—This label is displayed if a procedure contains external

functions that are not recognized.

■ Pipe Stages—This label is displayed if a procedure contains pipe

stages that are not recognized.

■ Usage—This label is displayed if usage information is available for a

procedure. This number represents the number of hits weighted by

time (as reported by the Tivoli NetView LIST MEMSTAT command).

Chapter 6: REXX External Assembler API 83

Chapter 6: REXX External Assembler API

This section contains the following topics:

REXX and Assembler Programs (see page 83)

Environmental Considerations (see page 84)

Make Programs Accessible to CA NetMaster (see page 85)

External Program Environment (see page 86)

Provided Control Blocks (see page 86)

Supported Execution Interfaces (see page 89)

REXX and Assembler Programs

NetMaster REXX, like TSO/E REXX, provides an interface that contains the

following features:

■ You can write programs that provide new ADDRESS (Subcommand)

environments.

■ You can write external procedures and functions.

■ These programs can access certain REXX facilities.

■ You can write programs that can be called via the REXX ADDRESS LINK and

ADDRESS ATTACH statements.

The interface is a subset of the interfaces described in the TSO/E REXX

Reference:

■ The interface is one-way. That is, REXX programs can request external

interface services. However, external programs cannot request REXX

execution. (For example, IRXEXEC and IRXJCL are not supported).

■ The interface can make requests to REXX services that are normally available

to external programs. For example, IRXSAY and IRXEXCOM are available.

■ Some facilities are not available, or are not fully supported.

Environmental Considerations

84 NetMaster REXX Guide

Environmental Considerations

In the TSO/E implementation of REXX, each user has their own address space.

While (say, under ISPF), there may be more than one REXX process or task

executing at the same time, the entire address space and all its resources are

private to that user.

Under TSO/E, most programs execute unauthorized. The programs are loaded

from non-authorized libraries, and cannot perform authorized functions. A

program cannot do damage to system data areas.

Under Tivoli NetView, multiple users share the one address space. Work for

different users is processed under different tasks. Also, the address space itself

and all tasks in the address space execute in an APF-authorized environment.

Under CA NetMaster, multiple users share one address space, and the

environment is APF-authorized. The ramifications of this, when writing REXX

external interface programs, include the following:

■ All programs must be loaded from an APF-authorized library. APF libraries

are generally restricted for update by the security system.

■ The interface programs can perform functions that may damage the address

space or system. Thus it is imperative that they are carefully checked.

■ User-written external interface programs must be registered before they can

be used. This additional step prevents accidental execution of programs in an

APF-authorized environment.

■ It is a good idea to restrict update access to the REXX source libraries

available to a region.

Make Programs Accessible to CA NetMaster

Chapter 6: REXX External Assembler API 85

Make Programs Accessible to CA NetMaster

REXX external interface programs must be made accessible to CA NetMaster.

This means that they must be in a STEP/JOB library or in the LINKLIST or LPA

libraries.

CA NetMaster requires APF authorization. Because all libraries in the STEP/JOB

library concatenation must be APF-authorized, this means that these external

programs must be placed in an APF-authorized library.

Placing modules in an APF-authorized library is normally restricted by installation

security configuration. Having placed the programs in an appropriate library, the

programs must (in most cases) also be registered with NetMaster REXX.

Depending on the use of the program, this can be done as follows:

■ If a program is to be called as an external PROCEDURE or FUNCTION by using

the RXCTL DEFINE command:

RXCTL DEFINE FUNCTION=funcname [LOADMOD=modname]

(If the LOADMOD operand is omitted, the function or procedure name is also

the load module name).

■ If a program is to be called as an external subcommand handler by using the

RXCTL DEFINE command:

RXCTL DEFINE SUBCMD=envname LOADMOD=modname

■ A program that has been defined using one of the above methods may use

the IRXSUBCM facility to add another program to the subcommand table. In

this case no additional registration is required.

■ Programs called using ADDRESS LINK and ADDRESS ATTACH do not need

registration (But of course, they must be in an accessible library).

External Program Environment

86 NetMaster REXX Guide

External Program Environment

Multiple concurrent user sessions are supported. A user session can concurrently

execute any number of REXX processes. Any number of these REXX processes

may request external programs be called.

To provide isolation between REXX processes, users, and so on, each REXX

process that requests external programs, will have a private task attached. This

task will be used to call all external programs, and so on, including CA product

interfaces.

The task is persistent. Once started, it will stay running until the REXX process is

terminated, or an ABEND occurs in an external program.

The external program can use REXX services (such as IRXUID) to obtain the user

ID of the owning user, if this is important (for example, to issue RACROUTE

requests).

Note: The task has not had an ACEE representing the user anchored.

By using a separate task, any waits, delays, loops, and so on, in the external

program will not impact other users.

Note: If the REXX process terminates, the subtask will be detached. Any

resources allocated by the external program will be cleaned up, for example

GETMAIN‘d storage (as long as it is not in a shared subpool). For example, if the

external program has attached further tasks, these will be force-terminated (A03

ABENDs). Resources not associated with tasks (for example, dynamically

allocated data sets) will stay allocated.

Provided Control Blocks

The following TSO/E REXX control blocks are emulated:

■ Environment block (ENVBLOCK)

■ Table of external entry points (EXTE)

■ Workblock extension (WBEXT)

■ Instorage block (INSTBLK)

■ Parameter block (PARMBLOK), including:

– SUBCOM table

– Package Table (PACKTB)

– Module Name Table (MODNAMET)

■ Evaluation Block (EVALBLOK)

Provided Control Blocks

Chapter 6: REXX External Assembler API 87

Environment Block (ENVBLOCK)

The environment block (ENVBLOCK) is supported as follows:

■ The ID, version (0100), and length are all set correctly

■ The parmblock pointer is set to point to the emulated PARMBLOCK.

■ The USERFIELD is used internally. Do not use this field. (Because IRXINIT is

not supported, this is of no consequence.)

■ The WORKBLOK_EXT field is set to the address of the emulated

WORKBLOK_EXT.

■ The pointer to the table of external entry points is set to the emulated EXTE

address.

Other fields are not set.

Table of External Entry Points (EXTE)

The table of external entry points is set to point to routines for all documented

REXX external API facilities; however, some of these routines do not perform any

useful function.

Workblock Extension (WORKBLOCK_EXT)

The workblock extension is supported as follows:

■ The pointer to the instorage block (INSTBLK) is set.

■ The WORKEXT_WORKAREA field is used internally. Do not use this field.

Other fields are not set up.

Instorage Block (INSTBLK)

NetMaster REXX programs are always loaded (and compiled) by CA NetMaster;

however, the instorage block provides information about the program. For this

reason, the following fields in the instorage block are provided:

■ The acronym and header length.

■ The pointer to the pointer table. A length of (8) indicates that one line

address or length pair, or both, is present.

■ The member name, ddname, and subcom names.

■ The dsname field, which is set to a question mark (?).

Provided Control Blocks

88 NetMaster REXX Guide

Parameter Block (PARMBLOK)

The parameter block and related control blocks are supported as follows:

■ The PARMBLOCK_ID field has a value of GRXPARMS (This distinguishes it

from a standard IBM-format PARMBLOK).

■ The version and language (ENU) are set.

■ The module name table address is set.

■ The subcom table address is set.

■ The package table address is set.

■ The flags are all zero, except that the flag and mask for the STORAGE

function are set to indicate the function is disabled.

■ The subpool value is set to 150 (An invalid subpool number).

■ The parse token and address space name are (normally) set to NM.

Note: Unless otherwise noted, do not alter these areas.

The module name table is set as follows:

■ All routine names are set to dummy names that cause a load failure if used.

(Check that the EXTE table has valid addresses). You do not need to load any

of these routines.

■ The INDD and OUTDD fields have special values that are recognized by the

IORTN for reading and writing to the user input and output devices (normally

the user terminal).

The Subcommand table (SUBCOMTB) is set as follows:

■ Each task has a separate copy of the subcom table (because the external

programs must be able to alter their private areas).

■ A subcom table header is built, as per the IBM documented format.

■ Table entries, containing the subcommand environment name, handling

module, and a blank token area, for all defined external subcommand

environments, are built. (These entries are the CA external product

interfaces, as well as any registered external user subcommand

environments)

■ Several ‗available‘ entries are built (that can be updated by the SUBCOM

facility).

A dummy package table (PACKTB) is built, with a header containing all zero

counts.

Supported Execution Interfaces

Chapter 6: REXX External Assembler API 89

Evaluation Block (EVALBLOK)

EVALBLOK is used for external procedure and function calls. One is provided, and

the IRXRLT routine can obtain a larger one as required.

Supported Execution Interfaces

The interfaces described in the following sections are available for executing

‗external‘ programs from NetMaster REXX.

Subcommand Handlers

These programs are executed when an ADDRESS statement or implied command

statement is executed, and the specified (or current) ADDRESS subcommand

environment is one that is an external program.

The following routines are called as documented in the TSO/E REXX Reference:

■ R0 on entry points to the Environment Block.

■ R1 on entry points to a parameter list.

■ R13 (save area address), R14 (return address), and R15 (Entry point

address) are standard.

■ A mode will always be 31.

The parameter list is as follows (These are the descriptions of the parameters

pointed to by the words in the parameter list pointed to by R1):

■ Name of the host command environment (8 chars)

■ Address of the command string (4 bytes)

■ Length of the command string (4 bytes)

■ Address of the user token in the SUBCOM table entry

■ Word that can be set to the return code of the command (4 bytes)

Supported Execution Interfaces

90 NetMaster REXX Guide

External Procedure and Function Handlers

These programs are executed when a REXX CALL statement or function call (in

an expression) refers to a procedure or function name that is not built-in, and is

registered as an external user program.

The following routines are called as documented in the TSO/E REXX Reference:

■ R0 on entry points to the Environment Block.

■ R1 on entry points to a parameter list.

■ R13 (save area address), R14 (return address), and R15 (Entry point

address) are standard.

■ A mode will always be 31.

The parameter list is as follows (These are the descriptions of the parameters

pointed to by the words in the parameter list pointed to by R1):

■ Reserved

■ Reserved

■ Reserved

■ Reserved

■ Input Parameter list. An array of 8-byte entries, each consisting of the

address and length of a parameter. The list is terminated by 8 bytes of X‘FF‘.

■ EVALBLOK. This block is used to return the value of a function call. (Note that

if IRXRLT is called, this address may become invalid).

Supported Execution Interfaces

Chapter 6: REXX External Assembler API 91

LINK and ATTACH Handlers

These programs are executed by the ADDRESS LINK pgm and ADDRESS ATTACH

pgm statements.

The following routines are called as documented in the TSO/E REXX Reference:

■ R0 on entry points to an Environment Block

■ R1 on entry points to a parameter list

■ R13 (save area address), R14 (return address), and R15 (Entry point

address) are standard.

■ Amode will be that of the target load module. But note that parameters will

be above the line. Calling programs in AMODE 24 will probably result in an

ABEND.

The parameter list is as follows (These are the descriptions of the parameters

pointed to by the words in the parameter list pointed to by R1):

■ Address of the passed character string

■ Length of the passed character string

Entry Points in the EXTE Table

The table of external entry points (EXTE) is fully formatted. A routine address is

present for all documented routines.

Note: This table must not be updated.

Not all routines are supported, and for those that are, not all of their functions are

supported.

In general, an unsupported routine, or unsupported function, does not abend,

but returns a severe error return code (generally 20). In addition, a message is

sent to the CA NetMaster log.

The routines are supported as follows:

IRXINIT

All calls result in an error.

IRXLOAD

All calls result in an error.

IRXEXCOM

All standard documented functions are supported.

Note: GREXX only supports variable value lengths up to 32000.

Supported Execution Interfaces

92 NetMaster REXX Guide

IREXEXEC

All calls result in an error.

IRXINOUT

Some functions are supported:

■ The INIT, TERM, and CLOSE requests are recognized, and ignored (RC =

0).

■ The WRITE request is honored if the ddname is equal to the name in the

MODNAMET table output ddname, and the output is treated as SAY

output.

■ WRITE to any other ddname results in an error return (RC=20), but no

message is logged.

■ Other requests result in an error and a message being logged.

IRXJCL

All calls result in an error.

IRXRLT

Only the GETBLOCK function is supported.

IRXSTK

Only the PUSH and QUEUE functions are supported

IRXSUBCM

All functions are supported, including ADD, DELETE, UPDATE, and QUERY,

however, the subcom table that is referenced contains only entries for

defined external subcommand environments, Also, there are a limited

number of free entries that can be added to (any alterations made by

IRXSUBCM are private to the associated REXX process).

IRXTERM

All calls result in an error.

IRXIC

All calls result in an error.

IRXMSGID

All functions are supported; however, there are no function codes. The

routine always returns RC = 0, meaning display message ID.

IRXUID

All functions are supported, including USERID and TSOID, which return the

associated user ID.

IRXTERMA

All calls result in an error.

Supported Execution Interfaces

Chapter 6: REXX External Assembler API 93

IRXSAY

All functions are supported, including WRITE and WRITEERR, where the

request is treated the same as SAY from the REXX program.

IRXERS

All calls result in an error.

IRXHST

All calls result in an error.

IRXHLT

All calls result in an error.

IRXTXT

All functions are supported, including DAY, MTHLONG, MTHSHORT, and

SYNTXMSG.

The day and month functions return the standard values (in English).

The syntax messages returned are the GREXX versions.

IRXLIN

All functions are supported, including LINESIZE function, which returns the

current logical terminal width. Background environments normally return 80.

IRXRTE

All calls result in an error.

Chapter 7: Executing NetMaster REXX Procedures Using NCL 95

Chapter 7: Executing NetMaster REXX

Procedures Using NCL

This chapter provides examples for executing NetMaster REXX procedures using

NCL.

This section contains the following topics:

Execution of REXX Procedures from an NCL Procedure (see page 95)

Execution of REXX Procedures Through Trouble Tickets (see page 95)

Execution of REXX Procedures from an NCL Procedure

If you are using NCL procedures, you can use the REXX and NV commands to

execute REXX procedures using NCL.

Example: Execute a REXX Procedure in Your Product Environment Using

NCL

The following example shows the format of an NCL statement that executes a

REXX procedure in your product environment:

REXX rexx_procedure parm_1 … parm_n

Example: Execute a REXX Procedure in the Tivoli NetView Emulation

Environment Using NCL

The following example shows the format of an NCL statement that executes a

REXX procedure in the Tivoli NetView emulation environment:

NV rexx_procedure parm_1 … parm_n

Execution of REXX Procedures Through Trouble Tickets

The alert monitor in your product region lets you use an NCL procedure to deliver

trouble tickets in response to alerts, with or without operator intervention. The

NCL procedure can include REXX commands that execute REXX procedures.

Appendix A: NCCF Commands 97

Appendix A: NCCF Commands

This appendix describes NCCF commands and parameters that are supported in

CA NetMaster.

This section contains the following topics:

Get Help in the NCCF-like Facility (see page 97)

Supported NCCF Commands (see page 98)

Supported Command Prefix Label Parameters (see page 102)

REXX Commands (see page 103)

Get Help in the NCCF-like Facility

The NCCF-like facility in OCS provides online help on NCCF commands, REXX

functions, and so on.

To get help in the NCCF-like facility

1. Enter NCCF at the command prompt in OCS.

The following message appears:

NCCF-like facility active, press PF3 to exit

2. Enter HELP followed by the command or function at the command prompt.

The requested online help appears.

Note: You can also access the online help directly from OCS or Command Entry

by entering NV HELP.

Supported NCCF Commands

98 NetMaster REXX Guide

Supported NCCF Commands

The following NCCF commands and parameters are supported.

Note: The online help in the NCCF-like facility contains more information about

the supported NCCF commands and parameters.

ACT

Activates the VTAM resource.

Parameters: resname, COMP, ALL, ONLY, SYNTAX, U, passthru

AFTER

Allows the operator to schedule a command or command procedure to run

after a specified period of time.

Parameters: time, ROUTE, ID, TIMEFMSG, PPT, commandtex

ALLOCATE

Dynamically allocates a new or existing data set from the region.

Parameters: BLKSIZE, CATALOG, COPIES, CYLINDERS, DATACLAS,

DATASET, DELETE, DEST, DIR, DSORG, FILE, HOLD, KEEP, LIKE, LRECL,

MGMTCLAS, MOD, NEW, NOHOLD, OLD, RECFM, RELEASE, SHR, SPACE,

STORCLAS, SYSOUT, TRACKS, UCS, UNIT, VOLUME, WRITER

AT

Schedules a command or command procedure to be run at a specific time.

Parameters: time, ROUTE, ID, TIMEFMSG, PPT, commandtext

BFRUSE

Performs the normal fully expanded Display VTAM Buffer VTAM command,

displaying information about VTAM buffer use.

Parameters: Standard VTAM parameters.

CALC

Performs calculator functions using the REXX interpreter. It supports both

decimal and hexadecimal calculations. The results are displayed in both

decimal and hexadecimal (when available).

CCDEF

Reads and updates the Tivoli NetView Emulation CCDEF table.

Parameters: QUERY, MEMBER, DELETE

CLEAR

Clears the NCCF screen.

Supported NCCF Commands

Appendix A: NCCF Commands 99

CLOSE

Ends all activity.

Parameters: NORMAL, STOP, IMMED, DUMP

CMD

Queues a command for processing.

Parameters: commandtext

DATE

Displays the current date and time.

DELAY

Waits for the specified period before sending the command or command

procedure to the system.

Parameters: time, commandtext

DISPFK

Displays current values assigned to PFKs as defined for the NCCF emulation.

The display information is in line mode rather than full screen mode.

DISPLAY

Performs the standard Display VTAM command.

Parameters: Standard VTAM parameters.

EVERY

Schedules a command or command procedure to be processed repeatedly at

a timed interval.

Parameters: time, ROUTE, ID, TIMEFMSG, PPT, commandtext

EXCMD

Enables you to queue a command to another user. If the user is not logged

on, then the command fails.

Parameters: opid, commandtext

FREE

Dynamically deallocates a data set from the region.

Parameters: FILE, DELETE, KEEP

GLOBALV

Enables you to define, save, and retrieve common or task global variables.

Parameters: DEFC, DEFT, PUTC, PUTT, GETC, GETT, variable_name_list

Supported NCCF Commands

100 NetMaster REXX Guide

GO

Resumes running a command procedure that is in PAUSE status or WAIT

status. You can use the GO command to give values to a command procedure

that is in PAUSE status.

Parameters: ID

HELP

Provides online help for the NCCF-like emulation.

Parameters: null, REXX, REXX itemname, NCCF, NCCF commandname,

PIPE, PIPE pipename, itemname, message_id

INACT

Inactivates the VTAM resource.

Parameters: resname, IMMED, FORCE, UNCOND, REACT, GIVEBACK,

passthru

INACTF

Forces the VTAM resource to become inactive.

Parameters: resname, passthru

INPUT

Opens a full-screen window to facilitate the creation and editing of the

multiline command entry buffer.

Parameters: number_of_lines

LIST

Displays information related to the specified parameter.

Parameters: TIMER=ALL OP=ALL, TIMER=tid OP=ALL, TIMER=ALL,

STATUS=OPS, CLIST=membername, DSILOG

LISTA

Displays the data set status, disposition, ddnames, and data set names of

the files currently allocated to the region. It can also indicate which data sets

contain a specific member.

Parameters: ddname, membername

LOGOFF

Terminates the NCCF-like session.

MODIFY

Performs the standard Modify VTAM command.

Parameters: Standard VTAM parameters.

Supported NCCF Commands

Appendix A: NCCF Commands 101

MSG

Sends specified text to specified target.

Parameters: ALL, LOG, operid, SYSOP

MVS

Enables you to enter a z/OS system operator command.

Parameters: commandtext

NETVASIS

Provides a way to enter a command in mixed case.

Parameters: commandtext

NM

Enables you to enter a CA NetMaster command.

Parameters: commandtext

PIPE

Provides most pipe stages supported in Tivoli NetView. These stages are

intended to aid in the migration from NetView.

Options: STAGESEP, ESC, END, NAME, DEBUG 1

PURGE

Purges all timers for the user running the command or a specified timer.

Parameters: TIMER=ALL, TIMER=tid

RECYCLE

Inactivates and then reactivates the VTAM resource.

Parameters: resname

RMTCMD

Allows you to execute NCCF commands on a remote system.

Parameters: SEND LU=linkname, LU=linkname, commandtext

SUBMIT

Submits a batch job, either from a data set (SEQ or PDS), or if data set

omitted, from the data set allocated to the DSIPARM DD.

Parameters: datasetname, datasetname (membername), dsiparm

membername

TSOUSER

Displays the status of the TSO user ID.

Parameters: id

Supported Command Prefix Label Parameters

102 NetMaster REXX Guide

VARY

Performs the standard Vary VTAM command.

Parameters: Standard VTAM parameters.

Supported Command Prefix Label Parameters

Limited support is provided for the use of labels to route commands to

INMC-linked regions.

The label has the following format:

linkname: [wait_time] command_text

Note: The online help in the NCCF-like facility (see page 102) contains more

information about the command prefix label and its usage considerations.

Determine Link Names

When you use a command prefix label to route commands to an INMC-linked

region, you need to know the name of the link to that region.

To determine the names of the Inter-Network Management Connection (INMC)

links, enter the SHOW LINK OCS command in your region.

Information about the links defined in your region appears.

Get Help About the Command Prefix Label

The NCCF-like facility in OCS provides online help on the command prefix label.

To get help about the command prefix label

1. Enter NCCF at the command prompt in OCS.

The following message appears:

NCCF-like facility active, press PF3 to exit

2. Enter HELP NCCF at the command prompt.

The NCCF-like Support for NetView Emulation online help panel appears.

3. Enter S beside Command Label under For More Help. If necessary, press F8

to scroll down the panel.

The online help for the command prefix label appears.

REXX Commands

Appendix A: NCCF Commands 103

REXX Commands

You can execute the following REXX commands from a REXX procedure:

Note: The online help in the NCCF-like facility (see page 97) contains more

information about REXX commands.

DOM

Removes a WTO message from one or more consoles.

Parameters: SMSGID

Returned Values:

100 Invalid length.

104 Invalid value

PARSEL2R

Extracts data from the character-string value of a variable and assigns the

extracted data to one or more variables using rules called a parsing

template. The parsing template specifies a list of symbols, patterns or

character selectors, or a combination of these separated by blanks.

Parameters: source_variable, parsing_template

Returned Values:

0 Processing completed successfully.

100 There are not enough parameters.

104 Input buffer is blank.

108 The command list dictionary lookup of source failed.

112 Hexadecimal data in the template is not valid.

116 The command list dictionary update failed.

120 The trailing slash (/) is missing.

VIEW

Displays the full-screen panel from user-written REXX procedures.

Parameters: dummy_name, panel_name, INPUT|NOINPUT, END|NOEND,

SWAP|NOSWAP, MSG|NOMSG

Returned Values:

0 Processing completed successfully.

4 Error reading or processing panel definition.

8 Panel containing comment lines only or katakana.

16 Invalid parameters or environment.

81 Invalid panel definition.

REXX Commands

104 NetMaster REXX Guide

WAIT

Suspends processing of a command until the period has elapsed.

Parameters: WAIT nn, WAIT nn SECONDS, WAIT nn MINUTES

Return Values:

0 Processing completed successfully.

8 There are too many parameters.

12 A syntax error occurred.

REXX Commands

Appendix A: NCCF Commands 105

WTO

Sends a message to one or more consoles.

Parameters: DESC, LINETYPE, MCSFLAG, ROUTCDE, SYSCONID

Return Values:

4 WTO was sent with truncated text.

16 Internal processing failed.

112 SYSCONID length was not valid.

116 SYSCONID value is not valid.

124 The command list dictionary update failed.

136 LINETYPE is not valid.

140 KEY length is not valid.

164 ROUTCDE value is not valid.

172 MCSFLAG value is not valid.

176 DESC value is not valid.

204 No message passed. Completed successfully.

WTOR

Sends a message to one or more consoles and requests a reply.

Parameters: MCSFLAG, ROUTCDE, SYSCONID

Return Values:

4 WTO was sent with truncated text.

16 Internal processing failed.

100 No message passed. Completed successfully.

112 SYSCONID length was not valid.

116 SYSCONID value is not valid.

124 The command list dictionary update failed.

136 LINETYPE is not valid.

140 KEY length is not valid.

164 ROUTCDE value is not valid.

172 MCSFLAG value is not valid.

Appendix B: REXX Functions 107

Appendix B: REXX Functions

This appendix describes the REXX functions.

This section contains the following topics:

REXX Functions (see page 107)

REXX Functions

The returned values for all REXX functions are as follows:

Note: Unlisted functions always return a null value.

APPLID

Returns the application program identifier for the OCS window in which the

command list is running.

ATTENDED

Always returns 1 (attended).

AUTOTASK

Always returns 0 (not an autotask).

CGLOBAL

Returns the value of the named common global variable, if it exists. Null is

returned otherwise.

CMDNAME

Returns the name by which the program was called.

CURSYS

Returns the 1-8 character current system name.

DCO

Always returns N (not unattended).

DISC

Always returns 0 (not disconnected).

DISTAUTO

Always returns 0 (not a distributed autotask).

REXX Functions

108 NetMaster REXX Guide

DOMAIN

Returns the name of the current emulated Tivoli NetView domain, as

specified in the DSIDMNK member under the DSIPARM ddname.

FNDMBR

0 - The specified member name was found.

4 - The specified member name was not found.

O - cccccccc rrrrrrrr

O - DSS_PDS OPEN failed.

cccccccc - SYS.RETCODE

rrrrrrrr - SYS.FDBK

F cccccccc rrrrrrrr

F- DSS_PDS QUERY_MEM failed.

cccccccc - SYS.RETCODE

rrrrrrrr - SYS.FDBK

LU

Returns the logical unit name for this operator terminal.

NETID

Returns the value of the VTAM SSCP name.

NETVIEW

Returns NV34 if no arguments are passed to the function; otherwise, a string

argument of T return NetView V1R3 Emulation by NetMaster.

OPID

Returns user ID for no argument, O argument, and S argument.

Returns null for R argument.

Returns? for T argument.

OPSYSTEM

Returns the specific operating system under which CA NetMaster is

operating.

PANEL

Always returns 0 (panel commands are not allowed).

STCKGMT

Returns as an 8-byte hexadecimal value (the current Greenwich mean time

in store-clock format).

REXX Functions

Appendix B: REXX Functions 109

SUPPCHAR

Returns the suppression character used by CA NetMaster and the NCCF-like

facility, as specified in the DSIDMNK member under the DSIPARM ddname.

SYSPLEX

Returns the 1-8 character name of the z/OS SYSPLEX where the command

list is executing. Available when running under MVS/ESA Version 4 Release

2.2 or above.

TASK

Always returns OST (Operator Station Task is the type of task under which

the command list is running).

TGLOBAL

Returns the value of the named task global variable, if it exists. Otherwise

null is returned.

TOWER

Always returns 0 or null. Null if the string argument ends with an asterisk.

Otherwise 0 is returned, indicating no tower or subtower is enabled.

TYPE

Always returns ENT (enterprise option).

VTAM

Function returns the version and release of VTAM as a 4- character string in

the form VTvr, where v is the version number and r is the release number.

Note: The value of VTAM() is null if VTAM is not active.

VTCOMPID

Returns the 14-character VTAM component identifier.

Note: The value of VTCOMPID is null if the VTAM program is not active.

WEEKDAYN

Returns a numeric value indicating the day of the week.

1 = Monday

2 = Tuesday

3 = Wednesday

4 = Thursday

5 = Friday

6 = Saturday

7 = Sunday

Appendix C: Pipe Stages 111

Appendix C: Pipe Stages

This appendix describes pipe stage commands and parameters, and edit stage

orders that are supported in CA NetMaster.

This section contains the following topics:

Pipe Stage Commands (see page 111)

Edit Stage Orders (see page 116)

Pipe Stage Commands

The following pipe stage commands and parameters are supported:

Note: The online help in the NCCF-like facility (see page 97) contains more

information about the pipe stage command parameters.

BETWEEN

Divides message streams into sections.

Parameters: INCL, NOINCL, number, position.length, /1st string/, /2nd

string/

CASEI

Compares character strings without respect to case.

Parameters: stage_specification

CHANGE

Replaces occurrences of one string with another.

Parameters: position.length, /1st string/, /2nd string/, number

CHOP

Truncates lines after a specified character, column, or string.

Parameters: column, width, offset, /string/, AFTER, ANY, BEFORE, NOT,

STRING

COLLECT

Creates a multiline message, or messages, from input lines.

Parameters: AFTER, ASBEFORE, AT, BEFORE, BREAK, MAX, number,

position.length, /string/

Pipe Stage Commands

112 NetMaster REXX Guide

CONSOLE

Displays the contents of the pipeline.

Parameters: DUMP, XDUMP

CORRCMD

Processes a command with correlated wait and termination stages.

Parameters: ECHO, MOE, wait, cmdlabel, commandtext

CORRWAIT

Allows asynchronous messages into the pipeline.

Parameters: MOE, *, interval

COUNT

Counts the number of messages, lines, or bytes in the input stream.

Parameters: MESSAGES, BYTES, EACHLINE, EACHMSG, FROM, number,

LINES, MAXLINE, MINLINE

DELDUPES

Deletes duplicate messages.

Parameters: ALL, KEEPFIRST, KEEPLAST, PAD, position.length

DROP

Specifies the number of messages to discard from the pipeline.

Parameters: count, FIRST, LAST, LINES, MSGS

DUPLICAT

Copies messages in the input stream.

Parameters: number, *

EDIT

Creates or reformats messages.

Parameters: hexstring, position.length, number, /string

ENVDATA

Outputs environment data.

FANIN

Merges multiple input streams, in stream order, into a single output stream.

FANINANY

Merges multiple input streams, preserving the message order, into a single

output stream.

Pipe Stage Commands

Appendix C: Pipe Stages 113

FANOUT

Passes a single input stream to multiple output streams.

HOLE

Discards the contents of the pipeline.

JOINCONT

Joins consecutive messages that match a specified string.

Parameters: LEADING, NOT, /string/, TRAILING

KEEP

Defines a task global place to store messages.

Parameters: keepname, APPEND, SEIZE

LITERAL

Inserts text into the pipeline.

Parameters: /string/

LOCATE

Selects messages that match a specified character string to remain in the

pipeline.

Parameters: ALL, FIRST, LAST, position.length, /string/

LOGTO

Sends a copy of the contents of the pipeline to a specific log.

Parameters: *, ALL, HCYLOG, NETLOG, SYSLOG

LOOKUP

Matches data within a pipeline

Parameters: APPEND, detail_position.length, reference_position.length,

WILDCARD

MEMLIST

Creates a list of members in one or more partitioned data sets (PDS) or data

definitions (DD).

Parameters: (DD), (DSN), datasetname, ddname

MVS

Runs specified MVS commands.

Parameters: commandtext

Pipe Stage Commands

114 NetMaster REXX Guide

NETVIEW

Runs specified NetView REXX commands.

Parameters: commandtext, ECHO, MOE, NOPANEL

NLOCATE

Discards messages that match a specified character string.

Parameters: position.length, /string/

NM

Specifies to run a CA NetMaster command. The resulting messages are

placed in the pipeline.

Parameters: commandtext

NOT

Changes the way output is treated by those stages that discard part of their

output.

Parameters: stage_specification

PICK

Selects messages to remain in the pipeline based on a comparison of two

strings.

Parameters: position.length, operator, position2.length2, or /string

PIPEND

Causes a pipeline to end and issues a return code.

Parameters: *, number

PRESATTR

Changes the way messages appear on the Tivoli NetView console.

Parameters: asis, color, highlighting, intensity

QSAM

Reads from and writes to dynamically allocated data definition names or data

sets.

Parameters: data_set_name, data_definition_name, (DD), (DSN)

REVERSE

Changes the order of message text and message lines.

Parameters: LINE, MESSAGE, STREAM

SAFE

Reads or writes messages to a command procedure message queue.

Parameters: *, name, APPEND, SEIZE

Pipe Stage Commands

Appendix C: Pipe Stages 115

SEPARATE

Breaks MLWTOs into multiple single-line messages.

Parameters: DATA, SEQUENCE

SORT

Sorts input stream messages.

Parameters: A, D, PAD, position.length

SPLIT

Divides a line of text into multiple lines.

Parameters: count, AT, AFTER, ANY, BEFORE, STRING, /string/

STEM

Reads or writes records to or from command procedure variables.

Parameters: (COMMON), (TASK), APPEND, COLLECT, stemRoot, FROM,

number

STRIP

Removes characters from the beginning or end of a message.

Parameters: BOTH, LEADING, TRAILING, TO, NOT, BLANK, /character set/,

limit

SUBSYM

Substitutes z/OS and user-defined system symbolics in messages in the

pipeline.

TAKE

Specifies the number of messages to be kept in the pipeline.

Parameters: FIRST, LAST, count, LINES

TOSTRING

Ends the data stream when a specific character string is located.

Parameters: ALL|FIRST|LAST, INCL, NOINCL, position.length, /string/

VAR

Reads or writes records to or from command procedure variables.

Parameters: (COMMON), (TASK), name

VARLOAD

Sets variables to a specified value.

Parameters: (COMMON), (TASK)

Edit Stage Orders

116 NetMaster REXX Guide

VTAM

Runs specific VTAM commands in a local or remote domain.

Parameters: commandtext, ECHO, MOE, NOPANEL

XLATE

Accepts a message from its input stream, translates specified characters,

and writes the message to its output stream.

Parameters: position.length, UPPER, A2E, COMMON, E2A, LOWER

<

Reads data from DASD into the pipeline.

Parameters: DSIPARM. ddname, *, member

$STEM

Same as STEM, plus reads or writes message attribute variables associated

with specified data variables.

Parameters: (COMMON), (TASK), APPEND, COLLECT, stemRoot, FROM,

number

$VAR

Same as VAR plus reads or writes message attribute variables associated

with specified data variables.

Parameters: (COMMON), (TASK), name

Edit Stage Orders

The following edit stage orders are supported:

COPY

Copies one or more unread lines in a multiline message from input to output.

Type: Global

COPYREST

Copies all unread lines in a multiline message from input to output.

Type: Global

FINDLINE n

Changes the current line to the absolute line number indicated by the

argument.

Type: Global

Edit Stage Orders

Appendix C: Pipe Stages 117

FINDLINE string

Advances the current line to the line containing the specified target string.

Type: Global

FWDLINE n

Moves the current line forward by the number specified.

Type: Global

LASTLINE

Resets the input to the last line of a multiline message.

Type: Global

NEXTLINE

Combination of WRITELINE and READLINE. WRITELINE takes what is

currently in the text buffer and writes it to the output message as a line.

Type: Global

PAD

Defines the padding character to be used by all other orders.

Type: Global

PARSE

Defines how the WORD input order will count words.

Type: Global

READLINE

Provides the next line of a multiline message to the input orders.

Type: Global

RESET

Cancels all existing SKIPTO and UPTO orders.

Type: Global

SKIPTO

Redefines the logical start of the input line.

Type: Global

TOPLINE

Resets the input to the first line of a multiline message.

Type: Global

Edit Stage Orders

118 NetMaster REXX Guide

UPTO

Redefines the logical end of the input line.

Type: Global

WRITELINE

Writes all text built by the output orders to the output message.

Type: Global

CURRGMT

Specifies an 8-byte store clock value generated at the time the order is

executed.

Type: Input

hexstring

Specifies a hexadecimal string.

Type: Input

lineattr

Specifies that the input is one of the line attributes of the current line.

Type: Input

LINESENDER

Specifies the name of the sender.

Type: Input

msgattr

Specifies that the input is one of the message attributes of the current

message.

Supported attributes are IFRAUSDR, MSGCOUNT, and MSGORIGIN.

Type: Input

position.length

Specifies the subset of the input line to be processed. The subset is defined

by specifying a starting character and the total number of characters.

Type: Input

/string/

Specifies a delimited character string.

Type: Input

Edit Stage Orders

Appendix C: Pipe Stages 119

WORD

Specifies the subset of the input line to be processed. The subset is defined

by specifying a starting word and the total number of words.

Type: Input

B2C

Converts string of Boolean values to a character string.

Type: Conversion

C2B

Converts input to a string of Boolean values.

Type: Conversion

C2D

Converts input to a string representing a decimal number.

Type: Conversion

C2F

Converts input to a string representing a signed floating point number.

Type: Conversion

C2V

Converts a varying length string to a character string.

Type: Conversion

C2X

Converts input to a string representing its hexadecimal notation.

Type: Conversion

D2C

Converts a signed integer number into a full word.

Type: Conversion

DT

Assumes the input text is a store clock (STCK) and converts the value to a

readable 17-character string for the local time zone in the format MM/DD/YY

HH:MM:SS.

Type: Conversion

FOUND

Translates a null string into No and any other string into Yes.

Type: Conversion

Edit Stage Orders

120 NetMaster REXX Guide

F2C

Converts a signed floating point number into a double-word.

Type: Conversion

LEFT

Truncates or pads the input to the length specified. Characters are counted

from the beginning, or left, of the input.

Type: Conversion

ODDBYTES

Alternately, keeps and discards the input data.

Type: Conversion

OPDT

Assumes the input text is a store clock (STCK) and converts the value to a

readable 17-character string representing the date and time in the format

MM/DD/YY HH:MM:SS.

Type: Conversion

RIGHT

Truncates or pads the input to the length specified. Characters are counted

from the end, or right, of the input.

Type: Conversion

STRIP

Removes all padding characters from the beginning and end of the input.

Type: Conversion

STRIPL

Removes all padding characters from the beginning of the input.

Type: Conversion

STRIPR

Removes all padding characters from the end of the input.

Type: Conversion

SUBSTR

Selects a subset of the input data.

Type: Conversion

UPCASE

Translates the standard 26-character Latin letters to uppercase.

Type: Conversion

Edit Stage Orders

Appendix C: Pipe Stages 121

V2C

Converts input to a varying length string.

Type: Conversion

X2C

Converts character data to internal hexadecimal format.

Type: Conversion

YESNO

Converts a 1-byte field to the character string Yes or No.

Type: Conversion

ZDT

Assumes the input text is a store clock (STCK) and converts the value to a

readable - character string for Greenwich mean time in the format

MM/DD/YY HH:MM:SS.

Type: Conversion

COLOR

Sets presentation attributes for the output line.

Type: Output

LINETYPE

Defines the line type attribute of the output line.

Type: Output

NEXT

Specifies that the input is to be placed into the output without an intervening

blank.

Type: Output

NEXTWORD

Specifies that the input is to be placed into the output with an intervening

blank.

Type: Output

position

Specifies that the data is to be placed in the output line beginning at the

character, indicated by position.

Type: Output

Appendix D: Hypothetical Case Study—Migrating from Tivoli NetView 123

Appendix D: Hypothetical Case

Study—Migrating from Tivoli NetView

This appendix provides a case study illustrating how to migrate from Tivoli

NetView.

This section contains the following topics:

About the Case Study (see page 123)

The Hypothetical Environment (see page 124)

Composition of the Migration Team (see page 124)

The Migration Plan (see page 125)

About the Case Study

This case study follows the activities of a fictitious CA customer.

Black Lion Telecom is a new CA NetMaster customer. They have just chosen the

product to replace the SNA networking functions of Tivoli NetView. They use the

CA NetMaster NetView REXX Emulation facilities to ease their migration from

Tivoli NetView.

This case study shows the steps Black Lion Telecom takes to successfully

replicate their current Tivoli NetView NCCF SNA management capabilities under

CA NetMaster.

The Hypothetical Environment

124 NetMaster REXX Guide

The Hypothetical Environment

Black Lion Telecom has many large IBM z/OS mainframe systems running a

mixture of in-house and vendor products to deliver their core

telecommunications applications and support their corporate business needs.

Their internal data network is mainly SNA-based, supporting communication

between their large central data centers and many geographically remote

regional control centers. They also have a small but growing z/OS IP network.

For the past fifteen years, Black Lion Telecom has been using Tivoli NetView to

manage their mainframe SNA network. Many of the Tivoli NetView SNA

management features are used, but the core of the network operations work is

done with NCCF.

New corporate business and IT alignments have forced an evaluation and

justification of long-term mainframe software costs at Black Lion Telecom. As a

result of this evaluation, management has decided to change to CA NetMaster

NM for SNA and CA NetMaster NA.

Composition of the Migration Team

Black Lion Telecom‘s IT management assemble a team to migrate their NCCF

network management system from NetView. Between them, the team members

share the following skills and experience:

■ NetView REXX coding—Programmers analyze the procedures and make any

necessary changes to the REXX procedures to ensure that they work under

CA NetMaster.

■ Network administration—Network administrators help with the procedure

analysis, identify which CA NetMaster features are of use, and implement

new NCL procedures to complement the REXX procedures. Because CA

NetMaster is new to them, they are learning it themselves.

■ z/OS network operations—Network operators are the current end users of

the NetView REXX procedures. They test the migrated and new procedures,

and verify that they are happy with the final function provided.

■ Process analysis and technical writing—Analysts and writers update the

Black Lion Telecom Data Center‘s network operations instructions to

incorporate any changes resulting from the migration. They also produce

new training material.

Black Lion Telecom also has a CA consultant assigned to them to help with the

migration.

The Migration Plan

Appendix D: Hypothetical Case Study—Migrating from Tivoli NetView 125

The Migration Plan

The team produces a migration plan, to include the following broad tasks.

Note: Everyone migrating from NCCF faces the same typical tasks.

1. Identify and Prepare

Identify what procedures really need to be migrated. Prepare them for

migration. Make sure that the procedures work before migrating them. (A

little time spent on this at the start can save a lot of unnecessary effort later.)

2. Familiarize

Examine and experiment with the standard diagnosis and monitoring

functions of CA NetMaster. The team may be able to use some of these to

replace functions that are currently implemented by NetView REXX.

3. Analyze

Analyze the NetView REXX procedures that need to be migrated. The team

uses the NetMaster REXX analysis program to report on which REXX

procedures need changing, and why.

This program compares the NetView REXX commands, pipe stages, and

functions in use with those provided by the CA NetMaster NetView REXX

emulation environment. This provides an initial broad survey of the effort

required for the next steps.

4. Migrate

Update and test until the procedures work correctly. This is an iterative

process. Where you start and where you go next is guided by the output of

the REXX Analysis report, run during the analysis step.

a. Update procedures—Make code changes to the NetView REXX

procedures to enable them to run successfully under CA NetMaster. For

any individual procedure, code changes might range from none to

extensive.

b. Test all procedures—Test the NetView REXX procedures under the Tivoli

NetView Emulation environment. If they do not work, correct them.

5. Verify

Bring everything together. Test and verify the migrated REXX procedures

and any new NCL procedures against the production network.

The Migration Plan

126 NetMaster REXX Guide

Identify the NetView REXX Procedures that Need Migrating

The team must run every NetView REXX procedure considered for migration

through an analysis program and investigate any potential incompatibilities.

NetView REXX procedures not requiring any changes must also be verified in the

CA NetMaster NetView Emulation environment.

With a large number of procedures, the effort required to do this can quickly

increase. It is less work and far simpler to sort the NetView REXX procedures

before you commence any migration steps.

Firstly, the team must identify the procedures that need to be migrated. They

then use the REXX Analyzer to produce a report that guides them through the

work of updating the procedures. If they did not do a good job of sorting and they

analyzed a lot of unneeded procedures, the report will be longer and more

complicated than it has to be.

Typical Tivoli NetView sites have a mixture of useful and non-useful procedures.

Black Lion Telecom has been using Tivoli NetView NCCF for many years, and has

accumulated a large number of NetView REXX procedures, both distributed and

developed in-house. Their DSICLD ddname points to a concatenation of

procedure data sets of varied histories.

New staff members have incorrectly placed testing procedures in production data

sets. Procedure naming conventions have changed over time. Procedure data

sets for older versions of Tivoli NetView are concatenated at the bottom.

The migration team decides to start with only essential procedures. It is careful

to not touch the production environment. It takes the following actions:

■ The systems programmers prepare a single PDS,

BLTNET.NETVIEW.PRODREXX, for input to the REXX Analyzer. Initially they

copy all members from all concatenated DSICLD data sets to it.

■ They leave the production DSICLD data sets untouched—these are still being

used by production Tivoli NetView and will not be changed in any way.

The Migration Plan

Appendix D: Hypothetical Case Study—Migrating from Tivoli NetView 127

■ The Tivoli NetView programmers examine all of the members of

BLTNET.NETVIEW.PRODREXX, and identify and delete the members that

they do not need to migrate. These include the following procedures:

– Procedures that are not REXX, including many old Tivoli NetView CLISTs

– Testing procedures

– One-off procedures for transient problems that have been fixed

– Unrecognized procedures with no known authors

– Multiple nearly identical copies of the same procedures with different

names

– Procedures with the same names that exist in different DSICLD

concatenation levels where only the highest level copy is examined

Altogether, the team identifies 200 NetView REXX procedures that need to be

migrated.

Prepare the NetView REXX Procedures for Analysis

NetMaster REXX is based on GREXX, which is the CA common REXX engine. It is

a compiled implementation, with minor differences to TSO REXX.

While the REXX Analyzer has a choice of scan types, the most straightforward is

a scan type of REXXONLY—the others are for more advanced and specialized use.

Using REXXONLY, any procedure that does not have a REXX header is not

processed by the analyzer.

Because the REXXONLY report from the analyzer is what maps out much of the

migration work, the programmers edit all of the members of

BLTNET.NETVIEW.PRODREXX. In each one, they add the following comment as

the first line:

/* REXX */

More information:

REXX Source Recognition (see page 14)

The Migration Plan

128 NetMaster REXX Guide

Analyze the NetView REXX Procedures

A completed migration can look almost seamless to end users of NCCF; however,

CA NetMaster NetView Emulation is technically different from native NetView

REXX. Although the emulation includes many of the most popular Tivoli NetView

commands, functions, and pipe stages, not everything will work unchanged.

Obviously, less work is required to migrate NetView REXX code that already uses

the more common coding options.

A careful analysis helps you estimate how well the NetView REXX procedures fit

the NetMaster REXX environment. Analyzing the NetView REXX procedures is the

heart of the migration effort. After all the theories and promises, the analysis

answers the following question:

―How compatible is my specific NetView REXX code under the CA NetMaster

NetView REXX emulation environment?‖

This in turn helps you answer the next question:

―How much work will I have to do to change my NetView REXX code?‖

Run the REXX Analyzer

The Black Lion Telecom migration team performs the REXX procedure analysis by

using the REXX Analyzer.

The team has already implemented a CA NetMaster NM for TCP/IP region,

NETM10, on LPAR SYSA. SYSA is in the same sysplex as LPAR SYSB, where the

soon-to-be-replaced NETVIEW9 task runs.

The team takes the PDS of NetView REXX procedures prepared previously and

inputs this to the REXX Analyzer using the following procedure.

To run the REXX Analyzer

1. Enter /REXXAN.A in a CA NetMaster region.

The Analysis Criteria panel appears.

The Migration Plan

Appendix D: Hypothetical Case Study—Migrating from Tivoli NetView 129

2. Update the fields as required, and then press F6 (Action).

Scan Type+ REXXONLY
Do you use CA-PDSMAN? .. YES (Yes/No)

Member Details (Comma delimited)
 Include Member List ..

 Exclude Member List ..

Data Set Details
 Input Data Set BLTNET.NETVIEW.PRODREXX
 Output Data Set BLTNET.NETM10.REXXAN

NetView Details (REXX usage)
 System Name SYSB
 Running STC Name NETVIEW9

The Analysis Confirmation panel appears.

3. Press F6 (Confirm).

The analyzer analyzes Black Lion Telecom‘s 200 NetView REXX procedures

and writes the output to a member of BLTNET.NETM10.REXXAN.

The REXXONLY scan type ensures that only procedures with REXX in a

comment block on the first line are included in analysis processing.

The NetView Details (REXX usage) fields are optional. Because they are filled

in, a NetView REXX SHOW MEMSTAT command is sent to the specified

NetView REXX started task, and the results included in the analysis report.

The NetView REXX started task should be active for a while for the usage

figure to be meaningful.

The Migration Plan

130 NetMaster REXX Guide

Generate and Review the Report

The team uses the following procedure to generate a report from the output of

the analysis.

To generate a REXX Analyzer Summary Report

1. Enter /REXXAN.G.

The Report Criteria panel appears.

2. Specify SUMMARY in the Report Type field, update the other fields as

required, and then press F6 (Action).

The Report Confirmation panel appears.

3. Press F6 (Confirm).

The report is displayed online or saved in a data set as specified.

The migration team look at the report. There is so much information. They are

not sure where to start.

While there is no strict step-by-step formula for a migration—what you want and

how you have implemented NCCF varies widely—Black Lion Telecom‘s CA

consultant recommends the following approach that has worked for other

successful Tivoli NetView migrations:

1. Move the easiest, most potentially compatible NetView REXX procedures

over first. Do the changes needed to get them going quickly.

2. Examine the standard SNA Diagnosis and Monitoring features of CA

NetMaster. These include NEWS (for SNA event management), NTS (for SNA

session awareness), and NCPView (a status monitor for NCPs).

Examine the remaining NetView REXX procedures to identify which of these

provide functions that can be replaced by an existing feature.

3. Update and test the remaining, less compatible NetView REXX procedures.

For each, determine and perform the changes required to run it in CA

NetMaster. These procedures will fall into the following groups:

■ Those needing reasonably small REXX code changes

■ Those needing bigger REXX code changes

■ Those needing redevelopment in NCL

Because CA Technical Support has been involved in many successful migrations,

it has considerable experience in the area of code changes, and can easily

support the Black Lion Telecom migration team with this part of their migration.

The Migration Plan

Appendix D: Hypothetical Case Study—Migrating from Tivoli NetView 131

Migrate REXX Procedures that Passed Analysis

The List of Procedures that Pass Analysis (Total=n) section near the end of the

REXX Analyzer report identifies the REXX procedures that are most likely to be

compatible. These procedures are usually the simplest to migrate. The team

migrates these procedures first.

These procedures contain only recognized entities, which are the REXX

commands, functions, and pipe stages that have been implemented by the CA

NetMaster NetView REXX Emulation environment. This does not guarantee that

they will work unchanged, but they will generally be simple to change if required.

Of Black Lion Telecom‘s 200 NetView REXX procedures, the report indicates that

100 of them are procedures that passed analysis.

Verify the Procedures in Tivoli NetView

The CA consultant recommends this step—in previous migrations, a lot of time

was wasted attempting to fix migrated procedures that did not work originally

under Tivoli NetView. If problems occur with a procedure under CA NetMaster,

the fact that it was proven to work under Tivoli NetView narrows the problem

determination effort.

The network operators note the names of the 100 procedures that passed

analysis.

They go to their production NCCF consoles and run the 100 procedures in Tivoli

NetView to verify that they work correctly before, as well as after, the move.

They find that two of the procedures do not work in Tivoli NetView. They decide

not to migrate these procedures.

The Migration Plan

132 NetMaster REXX Guide

Test the Procedures in CA NetMaster

The migration team adds their NetView REXX procedures data set to NETM10's

COMMANDS concatenation:

*--

* PRODUCT REGION COMMANDS DATASET ALLOCATION

*--

 DD=COMMANDS,BLKSIZE=32000,DISP=SHR,DSN=BLTNET.NETM10.TESTEXEC

 DD=*,DISP=SHR,DSN=BLTNET.WHATEVER.CC11EXEC

 DD=*,DISP=SHR,DSN=BLTNET.WHATEVER.CC2DEXEC

 DD=*,DISP=SHR,DSN=BLTNET.NETVIEW.PRODREXX

Because the REXX procedures use a customized CCDEF table and the VIEW

command, the team also updates the NETVEMLDSN parameter group in NETM10

to point to the Tivoli NetView system definitions and panels that are used by the

procedures.

The team then run these 100 REXX procedures, one by one, unchanged, in

NETM10.

They run the procedures using the NCCF Emulation Facility. To access this

facility, they type the command, NCCF, from OCS.

This facility provides basic NCCF look-alike support. All commands entered under

this facility are automatically assumed to be NetView REXX commands or

procedures.

Example: Successful Procedure

Here is the result of running a procedure that checks the status of the currently

active VTAM exits and reports if the required exit is not active.

(18.05)---------- NetMaster Operator Console Services (PROD1) -----------------
PROD1:USERO1 NCCF-like facility active, press PF3 to exit
ACTVTMX10 - CHECKING ACTIVE VTAM EXITS - 28 Mar 2006 18:05:17

ACTVTMX10 - VTAM EXIT: ISTEXCUV IS ACTIVE
ACTVTMX10 - VTAM EXIT: ISTEXCSD IS ACTIVE
ACTVTMX10 - VTAM EXIT: ISTEXCAA IS ACTIVE
ACTVTMX10 - VTAM EXIT: ISTEXCGR IS ACTIVE
ACTVTMX10 - VTAM EXIT: ISTEXCPM IS ACTIVE
ACTVTMX80 ---
ACTVTMX80 - ** VTAM EXIT: ISTEXCVR IS REQUIRED BUT IS CURRENTLY INACTIVE **
ACTVTMX80 ---

ACTVTMX99 DONE

The Migration Plan

Appendix D: Hypothetical Case Study—Migrating from Tivoli NetView 133

The procedure is as follows:

/* REXX */

MSGID = 'ACTVTMX'

WARNING = 'NO'

 SAY MSGID||'00' ' - CHECKING ACTIVE VTAM EXITS -' DATE('N') TIME('N')

 SAY

 'PIPE VTAM D NET,EXIT ',

 ' | CORRWAIT 10',

 ' | SEP ',

 ' | LOC /IST1251I/',

 ' | STEM ACTX.'

 DO I = 1 TO ACTX.0

 VTAMEXIT = WORD(ACTX.I,2)

 EXITSTATUS = WORD(ACTX.I,5)

 IF (EXITSTATUS = 'ACTIVE') THEN

 SAY MSGID||'10' '- VTAM EXIT: 'VTAMEXIT 'IS 'EXITSTATUS

 ELSE

 IF (VTAMEXIT = 'ISTEXCVR') THEN

 WARNING = YES

 END

 IF (WARNING = YES) THEN

 DO

 SAY MSGID||'80' '--'||,

 '---------------------'

 SAY MSGID||'80' '- ** VTAM EXIT: ISTEXCVR IS REQUIRED BUT IS '||,

 'CURRENTLY INACTIVE **'

 SAY MSGID||'80' '--'||,

 '---------------------'

 END

 SAY

 SAY MSGID||'99' 'DONE '

EXIT

The Migration Plan

134 NetMaster REXX Guide

Review Test Results

Of Black Lion Telecom‘s 100 NetView REXX procedures that passed analysis:

■ 58 procedures execute without error the first time and produce the correct

output.

■ 12 procedures fail with a GREXX compile error.

■ 10 procedures execute without error but produce incorrect output.

■ 15 procedures have unrecognized or unsupported command parameters.

■ 5 procedures failed during execution.

The team examines each of the procedures that did not work.

Note: When testing the REXX procedures that passed analysis, there is no such

thing as a typical spread of results. There is a very wide variance, from site to

site, in the percentage of those procedures that will have a particular outcome.

Correct and Retest the Procedures in CA NetMaster

The team corrects the procedures based on the encountered problem and retests

them.

At the end of all of the repeated testing, updating and retesting of the

procedures, 100 of Black Lion Telecom‘s 200 NetView REXX procedures are now

running successfully in NETM10.

The Migration Plan

Appendix D: Hypothetical Case Study—Migrating from Tivoli NetView 135

Procedures with GREXX Compilation Errors

Causes of compilation errors are usually simple to identify.

After examination, a few procedures that got GREXX compile errors are found not

to be REXX procedures, but Tivoli NetView CLISTs. The REXX header had been

incorrectly added to them, so they were analyzed by mistake. The procedures

are either removed from analysis or rewritten in REXX.

The other GREXX compile errors have the same cause. The REXX procedures

contain a SIGNAL ON ERROR statement but no corresponding label. NetView

REXX tolerates this, but CA NetMaster does not.

Example: Procedure That Runs in Tivoli NetView but Does Not Compile

in CA NetMaster

/* REXX */

 SIGNAL ON ERROR

 TOTAL = (1 + 1)

 SAY TOTAL

The following compilation error results:

(18.20)---------- NetMaster Operator Console Services (PROD1) -----------------
PROD1:USERO1 NCCF-like facility active, press PF3 to exit

NR1101 REXX COMPILE OF TT2 IN LIBRARY COMMANDS HAS ERRORS/WARNINGS:
NR1284 ERROR 16 ...
NR9916 Error within TT@ , line 2 Label not found

The solution is to make the REXX procedure code more accurate. Add the labels

and associated proper error processing logic, as dictated by good programming

practice.

When a procedure with a missing ON ERROR label is run in Tivoli NetView and a

run-time error occurs, the processing continues exactly as if the ON ERROR

statement was not there. This is not an advantage—there could be a false sense

of security from having SIGNAL statements that do nothing when triggered.

Procedures with Incorrect Output

Some NetView REXX procedures execute under CA NetMaster, but they produce

incorrect output.

After examining the code, the REXX programmers found the problem is due to

some message prefix differences between Tivoli NetView and CA NetMaster.

These procedures are updated to parse for the CA NetMaster messages prefixes.

The Migration Plan

136 NetMaster REXX Guide

Procedures with Unsupported Parameters

Some NetView REXX procedures fail to execute because their parameters are not

recognized. Although these procedures passed analysis, not every parameter on

every emulated NetView REXX function, command, or pipe stage is supported.

Some of the unsupported parameters referred to Tivoli NetView-specific things

that are not applicable under CA NetMaster. These parameters are removed.

Retesting shows no loss of function.

Some of the unsupported parameters do things that Black Lion Telecom requires.

The REXX programmers update these procedures and use the appropriate

NetMaster REXX pipe stage to issue CA NetMaster commands that perform the

required function.

NetMaster REXX supports many common Tivoli NetView pipe stages. The REXX

programmers use the online help to get details of the pipe stage command

parameters.

From OCS, they type NCCF, press F1, and select PIPE (NCCF) command.

Example: Unsupported DELETE Parameter of CON Pipe Stage Command

Here is an example of running the following procedure that contains unsupported

operands:

/* REXX */

 " PIPE LIT /HELLO/|CON DELETE "

EXIT

The following error results:

(18.48)---------- NetMaster Operator Console Services (PROD1) -----------------
PROD1:USERO1 NCCF-like facility active, press PF3 to exit

XNEM005 Unsupported keyword argument: DELETE
XNH362E PIPELINE TERMINATED. ERROR IN STAGE 2 IN PIPELINE 'PIPE': CON DELETE

The Migration Plan

Appendix D: Hypothetical Case Study—Migrating from Tivoli NetView 137

Procedures That Did Not Execute

Some NetView REXX procedures do not execute correctly.

After examining the code, the REXX programmers find that the procedures need

non-executable files—data, tables, and lists of VTAM commands—that they

usually find in the DSICLD data sets.

When the members were previously copied to BLTNET.NETVIEW.PRODREXX, the

REXX procedures only were copied. This was so that only the very essential

members were copied.

The non-executable members required by these procedures are now copied to

the CA NetMaster PDS from the DSICLD data sets. The procedures now find their

data and execute correctly.

Considerations

Unlike NetView REXX, where procedure compilation is additional and chargeable,

NetMaster REXX is always compiled. In production, this is a performance benefit.

In a development situation, where a REXX procedure may be frequently modified

and retested, programmers can disable automatic compilation by one of the

following methods:

■ Use the UNLOAD command to manually unload changed procedures.

■ Use the PROFILE NCLTEST options to cause automatic recompilation.

The Migration Plan

138 NetMaster REXX Guide

Migrate REXX Procedures That Contain Only One Unrecognized Entity

The Unrecog. Procedure Entity section of the REXX Analyzer report identifies the

procedures that contain only one unrecognized entity. For each procedure, the

section identifies the NetView REXX command, function, or pipe stage that is not

recognized. It also displays the usage of the procedures if the NetView Details

(REXX usage) fields were filled in on the Analysis Criteria panel. It indicates the

number of hits weighted by time for a procedure, from the Tivoli NetView SHOW

MEMSTAT command.

All this information helps to plan the recoding effort to bring the greatest

immediate rewards. If many procedures have the same single unrecognized

entity, then learning how to replace the use of that one entity results in many

working procedures. Similarly, if there are procedures with high usage figures,

they also need to be concentrated on early.

Some unrecognized entities can be replaced by equivalent CA NetMaster facilities

and do not require extensive code updates. In other cases, they do require

extensive code updates.

Sometimes, updates involve updating the REXX code. In a few cases, the

procedure will need the facilities of NCL.

The REXX Analysis report shows that of Black Lion Telecom‘s 200 NetView REXX

procedures, 70 contain only a single unrecognized entity.

The report shows that the most frequent unrecognized entity is the Tivoli

NetView TRAP command, which is typical for most migrations.

The Migration Plan

Appendix D: Hypothetical Case Study—Migrating from Tivoli NetView 139

Example: Replace TRAP Command

In Tivoli NetView, you can use the PIPE command, or the TRAP and MSGREAD

commands to process command output in REXX.

Procedures that use TRAP, WAIT, and MSGREAD tend to be older procedures that

were developed before the availability of the corresponding pipe stages. IBM

recommends against further use of superseded commands like these.

The following NetView REXX procedure uses the TRAP and MSGREAD commands:

/* REXX */

/* Simple example on how to replace a TRAP/MSGREAD code segment */

/* in a NetMaster NetView emulation REXX procedure */

/* */

/*--*/

/* Part 1 - The NetView REXX procedure */

/* */

/* a) Issue the TRAP command */

/* b) Issue the DATE command - The expected message is: */

/* CNM359I DATE : TIME = hh:mm DATE = mm/dd/yy */

/* */

/* c) Read message (MSGREAD) */

/* d) Extract and display the current time */

/*--*/

 "TRAP AND SUPPRESS ONLY MESSAGES CNM359I "

 "DATE"

 "MSGREAD"

 SAY " THE CURRENT TIME IS: "||MSGVAR(5)

 SAY " BYE "

This Tivoli NetView procedure produces the following output:

NCCF Tivoli NetView CNM01 USER01 01/04/06 10:01:06
 * CNM01 MYPROC
 C CNM01 THE CURRENT TIME IS: 10:01
 C CNM01 BYE

The Migration Plan

140 NetMaster REXX Guide

The following CA NetMaster procedure that replaces the Tivoli NetView procedure

does not use the TRAP command:

/* REXX */

/* Simple example on how to replace a TRAP/MSGREAD code segment */

/* in a NetMaster NetView emulation REXX procedure */

/*--*/

/* */

/* Part 2 - The NetMaster NetView Emulation REXX procedure: */

/* */

/* The TRAP, DATE command, MSGREAD and result display have */

/* been replaced by PIPE command: */

/* */

/* a) Issue DATE command via NetView stage */

/* b) Select XND359I message (NetMaster CNM359I equivalent)*/

/* c) Extract the time */

/* d) Display the result */

/* */

/*--*/

 "PIPE NETVIEW DATE",

 " |LOC /XND359I/",

 " |EDIT /THE CURRENT TIME IS:/ NEXT WORD 6",

 " |CON"

 SAY "BYE "

This procedure produces the following output:

(20.01)---------- NetMaster Operator Console Services (PROD1) -----------------
PROD1:USERO1 NCCF-like facility active, press PF3 to exit

THE CURRENT TIME IS: 20:01
BYE

The Migration Plan

Appendix D: Hypothetical Case Study—Migrating from Tivoli NetView 141

Migrate REXX Procedures That Contain Multiple Unrecognized Entities

Migrating procedures that have multiple unrecognized entities is similar to

migrating procedures with a single unrecognized entity.

Of Black Lion Telecom‘s 200 NetView REXX procedures, 30 of them contain

multiple unrecognized entities. They need to provide equivalent function in CA

NetMaster.

These include some of the oldest REXX procedures and those that will need the

most redevelopment and coding work.

Some of the procedures contain only the unrecognized entities that were

encountered while migrating procedures containing a single unrecognized entity.

Some of these can be updated in the same manner.

This leaves the more challenging procedures to migrate. Some of these

procedures can be replaced by CA NetMaster features, thus minimizing recoding.

Also, full-screen handling is already done by these features. Any remaining

procedures can be converted with help from Technical Support.

CA NetMaster Features

CA NetMaster has a wide range of SNA management features.

The CA consultant has been working with the migration team to examine and

identify where standard CA NetMaster NM for SNA and CA NetMaster NA options

can replace functions implemented with NetView REXX.

The consultant advises that an easy way to access and review the CA NetMaster

NM for SNA features is to enter /SNA at any menu prompt to list the high-level

shortcuts to SNA features. The shortcuts can then be used to access those

features.

Black Lion Telecom has several NetView REXX procedures that were written to do

APPN-related tasks. These tasks, and more, are already done by the APPN

features in CA NetMaster.

The Migration Plan

142 NetMaster REXX Guide

Example: APPN Features

The APPN Menu enables you to display the APPN Transport Resource List, which

is typical of a CA NetMaster NM for SNA display. Additional data can be displayed

by pressing PF11.

 PROD1------------------ NCS : Transport Resource List -------------------------
 Command ===> Scroll ===> CSR

 S/=View TRLE D=Display TRLE SU=View ULP PU SUC=View ULP CP ?=More Actions
 TRL MPC MPC --Upper Layer Protocol (ULP)--
 Entry Ctrl Status Level Usage HPDT PU CP Name TG
 AMF1G01Z MPC ACTIV QDIO SHARE YES
 AMF1G02X MPC ACTIV QDIO SHARE YES
 AMF1G03X MPC NEVAC QDIO SHARE *NA*
 AMF1G51X MPC NEVAC QDIO SHARE *NA*
 AMF1G52X MPC NEVAC QDIO SHARE *NA*
 AMF1G53X MPC NEVAC QDIO SHARE *NA*
 AMF3G10X MPC NEVAC QDIO SHARE *NA*
 A11TA01 MPC ACTIV NOHPDT ***N/A** NO A11AP01 SERVRA01.A01X99 21
 A11TA29 MPC ACTIV NOHPDT ***N/A** NO A11AP29 SERVRA01.A29X99 21
 A11TA31 MPC ACTIV NOHPDT ***N/A** NO A11AP31 SERVRA01.A31X99 21
 A11TA55 MPC ACTIV NOHPDT ***N/A** NO A11AP55 SERVRA01.A55X99 21
 A11TA57 MPC INACT NOHPDT ***N/A** *NA*
 A11TA58 MPC ACTIV NOHPDT ***N/A** NO A11AP58 SERVRA01.A58X99 21
 A11TA61 MPC ACTIV NOHPDT ***N/A** NO A11AP61 SERVRA01.A61X99 21
 ISTT11D1 XCF ACTIV HPDT SHARE *NA* ISTP11D1 SERVRA01.A01X99 22
 ISTT1131 XCF ACTIV HPDT SHARE *NA* ISTP1131 SERVRA01.A31X99 22
 F1=Help F2=Split F3=Exit F5=Find F6=Refresh
 F7=Backward F8=Forward F9=Swap F11=Right

A wide variety of actions can be performed against each entry. For example,

entering S beside an entry opens the Node Display - TRLE panel:

 Node Name ... AMF1G01Z Link Name ... PROD1

 | HOST | NetID SERVRA01
 (NONE) | | OpSys z/OS
 END | A11X99 | Subarea 11
 | | VTAM ... 6.1.7
 ||
 | TRLE | Status ACTIV
 | | Desired ACTIV
 | AMF1G01Z | Linetyp LEASED
 | | Prcol MPC

The Migration Plan

Appendix D: Hypothetical Case Study—Migrating from Tivoli NetView 143

Another example is to use APING to test connectivity:

 PROD1-------------------- NCS : APING Results List ----------------------------
 Command ===> Scroll ===> CSR

 Resource Name SERVRA01.A01X99
 Count 3
 Packet Count 1
 Packet Size 100
 Echo?
 Logmode
 Transaction Program
 --
 Resource Min/Avg/Max Cnt Pkts Size Rate LogMode COS
 USILDA01.A01X99 1/1/2 3 1 100 150KB/s #INTER *BLANK*
 --
 IST1460I TGN CPNAME TG TYPE HPR
 IST1461I 21 SERVRA01.A01X99 APPN ANR
 IST1463I ALLOCATION DURATION: 5 MILLISECONDS
 IST1464I PROGRAM STARTUP AND VERSION EXCHANGE: 2 MILLISECONDS
 END

 F1=Help F2=Split F3=Exit F6=Action
 F7=Backward F8=Forward F9=Swap F10=Topology F11=VTAMDisp

The Migration Plan

144 NetMaster REXX Guide

Complete the Migration

Black Lion Telecom‘s NetView REXX procedures—some unchanged, some with

minor updates, some rewritten, and a few totally replaced by NCL—are finally all

running in NETM10.

NETM10 runs in parallel with NETVIEW9. The operation of NETM10 is repeatedly

tested, compared, and verified against the Tivoli NetView system it will replace.

It meets the NETVIEW9‘s existing service level agreements with no difficulty.

As part of the migration, the following tasks were performed:

■ The network operations staff receives basic CA NetMaster training. Very little

training is required in many areas because the migrated REXX procedures

perform almost identically to their Tivoli NetView equivalents. The NCCF

look-alike facility helps a lot.

■ The technical writers update Black Lion Telecom‘s network operations

procedures.

■ The support staff learns to use the CA NetMaster Alert Monitor. Black Lion

Telecom plans to make the Alert Monitor part of their standard monitoring.

The Migration Plan

Appendix D: Hypothetical Case Study—Migrating from Tivoli NetView 145

CA Service Desk Integration

Black Lion Telecom runs CA Service Desk. Because CA Service Desk requests can

be created from alerts for serious network error conditions, help desk personnel

are given contact procedures for z/OS SNA Network Support. The following

Request List shows some requests.

The Migration Plan

146 NetMaster REXX Guide

What Is Next?

Black Lion Telecom‘s migration team have learnt a lot about CA NetMaster

NetView REXX Emulation. Their NetView REXX programmers have an overview of

the CA NetMaster development environment. Now that the migrated NCCF REXX

procedures are stable, their network operations analysts have time to familiarize

themselves with all the SNA management capabilities in CA NetMaster.

They begin to plan their further migration from NLDM to CA NetMaster NTS and

from NPDA to CA NetMaster NEWS. They also plan to use NCPView and SNA

Summary in CA NetMaster. This completes their Tivoli NetView migration.

Unlike NCCF, where you often did most of your customized development,

migration to NTS, NEWS, NCPView, and other CA NetMaster SNA management

features requires comparatively little if any coding. Robust, out-of-the-box menu

structures are provided with these SNA features that let many ex-Tivoli NetView

customers work in CA NetMaster quickly.

As Black Lion Telecom‘s z/OS IP network grows in the future, CA NetMaster NM

for TCP/IP can help them.

Index 147

Index

A

ADD VARTABLE • 45

ADDRESS environments • 33

CA product interface • 37

CA-7 • 37

CASCHD • 37

descriptions • 36

LINK and ATTACH • 36

MVS • 36

standard commands • 34

SYSVIEWE • 37

ADDRESS instruction • 16

ALLOC VARTABLE • 46

analysis output, maintaining • 75

ARG instruction • 16

assignments and symbols • 16

ATTACH handlers • 91

B

built-in function support • 23

C

CA product interface ADDRESS environments •

37

CA-7 ADDRESS environment • 37

CALL command • 40

CALL instruction • 17

CASCHD ADDRESS environment • 37

CCDEF table • 65

clauses and instructions • 16

CMD command • 41

COMMAND command • 41

command prefix label

linked region to route to • 102

online help • 102

overview • 102

commands • 26, 39

CALL • 40

CMD • 41

COMMAND • 41

EXECIO • 42

FLUSH • 27

GLOBALV • 43

GO • 27

LOAD • 27

NCCF • 97

online help • 26, 97

pipe stage • 111

REXX • 28, 34, 103

RXCHECK • 28

RXCTL • 29

RXCTL OFFLOAD • 30

SHOW • 26

standard • 34

START • 27

UNLOAD • 28

VARTABLE • 44

WRITE • 60

commands to external environments • 16

comparing NetMaster REXX and TSO/E REXX •

13

compiling and saving in object form • 14

libraries and source format • 13

REXX source recognition • 14

conditions • 25

control blocks

environment block (ENVBLOCK) • 87

evaluation block (EVALBLOK) • 89

instorage block (INSTBLK) • 87

parameter block (PARMBLOK) • 88

REXX External Assembler API • 86

table of external entry points (EXTE) • 87

workblock extension (WORKBLOCK_EXT) •

87

controlling REXX processes • 31

creating reports • 77

D

DELETE VARTABLE • 49

Detailed Report • 76

DO instruction • 17

DROP instruction • 17

E

edit stage orders • 116

entry points in the EXTE table • 91

ENVBLOCK • 87

environment block (ENVBLOCK) • 87

environments, ADDRESS • 33

EXECIO command • 42

148 NetMaster REXX Guide

execution interfaces

ATTACH handlers • 91

entry points in the EXTE table • 91

external procedures • 90

function handlers • 90

LINK handlers • 91

REXX External Assembler API • 89

subcommand handlers • 89

EXIT instruction • 17

expressions and operators • 15

EXTE table • 87, 91

External Assembler API • 83

environmental considerations, making

programs accessible • 85

external functions, TSO/E • 24

external procedures • 90

external programming interface • 25

F

FLUSH command • 27

FREE VARTABLE • 51

function handlers • 90

function support • 23

functions, REXX

online help • 97

supported • 107

G

general REXX execution • 64

generating Online Summary Report • 77

GET VARTABLE • 52

GLOBALV command • 43

GO command • 27

I

IF instruction • 17

implementation differences • 14

assignments and symbols • 16

clauses and instructions • 16

commands to external environments • 16

expressions and operators • 15

NetMaster REXX structure and general

syntax • 15

instructions • 16

INTERPRET instruction • 18

ITERATE instruction • 18

K

keyword instructions • 16, 22

ADDRESS • 16

ARG • 16

CALL • 17

DO • 17

DROP • 17

EXIT • 17

IF • 17

INTERPRET • 18

ITERATE • 18

LEAVE • 18

NOP • 18

NUMERIC • 18

OPTIONS • 19

PARSE • 20

PROCEDURE • 21

PULL • 21

PUSH • 21

QUEUE • 21

RETURN • 22

SAY • 22

SELECT • 22

TRACE • 22

UPPER • 23

L

label, command prefix

linked region to route to • 102

online help • 102

overview • 102

language differences • 14

assignments and symbols • 16

clauses and instructions • 16

commands to external environments • 16

expressions and operators • 15

NetMaster REXX structure and general

syntax • 15

LEAVE instruction • 18

LINK and ATTACH ADDRESS environment • 36

LINK handlers • 91

LOAD command • 27

M

maintain analysis output • 75

making programs accessible to Unicenter

NetMaster • 85

MVS ADDRESS environment • 36

N

NCCF commands

Index 149

online help • 97

supported • 97

NCL (Network Control Language) • 95

NetMaster REXX environment commands • 39

NETVEMLDSN parameter group • 65

NetView emulation • 63

REXX execution • 64

supported address environments • 64

supported external functions • 65

NetView migration • 123

APPN • 141

REXX procedures • 125

team composition • 124

NOP instruction • 18

numbers and arithmetic • 25

NUMERIC instruction • 18

O

online help

command prefix label • 102

commands • 26

NCCF commands • 97

pipe stages • 97

REXX functions • 97

online reports • 75

operators • 15

OPTIONS instruction • 19

P

parameter block (PARMBLOK) • 88

parameter groups, NETVEMLDSN • 65

PARMBLOK • 88

PARSE instruction • 20

parsing • 25

pipe stage commands

online help • 97

supported • 111

Primary Menu • 68

PROCEDURE instruction • 21

procedure library • 69

producing reports • 77

PULL instruction • 21

PUSH instruction • 21

PUT VARTABLE • 54

Q

QUERY VARTABLE • 56

QUEUE instruction • 21

R

reports • 75

create report • 77

Detailed Report • 76

Information to Prioritize Your NetView REXX

Migration • 79

List of Procedures that Fail Analysis • 79

List of Procedures that Pass Analysis • 79

produce report • 77

Report Input Details • 78

sample report • 78

Summary Online Report • 72

Summary Report • 76

RESET VARTABLE • 57

return codes for VARTABLE command • 48

RETURN instruction • 22

REXX analyzer • 67

accessing the Primary Menu • 68

maintain analysis output • 75

online reports • 75

processing • 67

analysis • 67

procedures with recognized entities • 68

report generation • 68

REXX procedure library • 69

Summary Online Report • 72

using • 68

REXX command • 28

REXX execution

alert monitor • 95

considerations • 64

NCL procedures, from • 95

REXX External Assembler API • 83

control blocks • 86

environmental considerations • 84

making programs accessible to Unicenter

NetMaster • 85

execution interfaces • 89

provided control blocks • 86

REXX functions

online help • 97

supported • 107

REXX procedure library • 69

REXX procedures

analysis • 128

compilation errors • 135

migration • 130

output incorrect • 135

unsupported parameters • 136

150 NetMaster REXX Guide

REXX processes, controlling • 31

RXCHECK command • 28

RXCTL command • 29

RXCTL OFFLOAD command • 30

S

sample reports • 78

Information to Prioritize Your NetView REXX

Migration • 79

List of Procedures that Fail Analysis • 79

List of Procedures that Pass Analysis • 79

Report Input Details • 78

SAY instruction • 22

SELECT instruction • 22

SHOW command • 26

SLEEP REXX command • 36

standard commands • 34

START command • 27

subcommand handlers • 89

Summary Report

generating • 72

information in • 76

support, built-in functions • 23

symbols • 16

SYSVIEWE ADDRESS environment • 37

T

tables

CCDEF • 65

external entry points (EXTE) • 87

TRACE instruction • 22

TSO/E external functions • 24

conditions • 25

external programming interface • 25

numbers and arithmetic • 25

parsing • 25

TSO/E REXX, comparing to NetMaster REXX • 13

compiling and saving in object form • 14

libraries and source format • 13

REXX source recognition • 14

U

UNLOAD command • 28

UPDATE VARTABLE • 58

UPPER instruction • 23

V

VARTABLE command • 44

ADD • 45

ALLOC • 46

DELETE • 49

FREE • 51

GET • 52

PUT • 54

QUERY • 56

RESET • 57

return codes • 48

UPDATE • 58

W

workblock extension (WORKBLOCK_EXT) • 87

WORKBLOCK_EXT • 87

WRITE command • 60

	CA Mainframe Network Management NetMaster REXX Guide
	Contents
	1: Introducing NetMaster REXX
	About This Guide
	NetMaster REXX
	Migration from Tivoli NetView

	NetMaster REXX and TSO/E REXX
	Libraries and Source Format
	REXX Source Recognition
	Compile and Save in Object Form

	Language and Implementation Differences
	NetMaster REXX Structure and General Syntax
	Expressions and Operators
	Clauses and Instructions
	Assignments and Symbols
	Commands to External Environments

	Keyword Instructions
	ADDRESS
	ARG
	CALL
	DO
	DROP
	EXIT
	IF
	INTERPRET
	ITERATE
	LEAVE
	NOP
	NUMERIC
	OPTIONS
	PARSE
	PROCEDURE
	PULL
	PUSH
	QUEUE
	RETURN
	SAY
	SELECT
	SIGNAL
	TRACE
	UPPER

	Built-in Function Support
	TSO/E External Functions
	Parsing
	Numbers and Arithmetic
	Conditions and Condition Traps
	External Programming Interface

	Command Descriptions
	Get Help About a Command
	SHOW
	FLUSH
	GO
	LOAD
	START
	UNLOAD
	REXX
	RXCHECK
	RXCTL
	RXCTL OFFLOAD

	Control REXX Processes

	2: ADDRESS Environments
	About ADDRESS Environments
	Standard Commands
	SLEEP REXX Command--Wait for a Specified Period

	ADDRESS Environment Descriptions
	MVS
	LINK and ATTACH

	CA Product Interfaces
	SYSVIEWE
	CA-7
	CASCHD

	3: NetMaster REXX Environment
	CALL
	CMD/COMMAND
	EXECIO
	GLOBALV
	VARTABLE
	VARTABLE ADD
	Return Codes

	VARTABLE ALLOC
	Return Codes

	VARTABLE DELETE
	Return Codes

	VARTABLE FREE
	Return Codes

	VARTABLE GET
	Return Codes

	VARTABLE PUT
	Return Codes

	VARTABLE QUERY
	Return Codes

	VARTABLE RESET
	Return Codes

	VARTABLE UPDATE
	Return Codes

	WRITE
	Return Codes

	4: Tivoli NetView Emulation
	About Tivoli NetView Emulation
	General REXX Execution
	Supported Address Environments
	Supported External Functions
	Locate the Tivoli NetView Data Sets Required by Emulation

	5: REXX Analyzer
	About the REXX Analyzer
	REXX Analyzer Processing
	Analysis Process
	Report Generation Process
	Procedures That Passed Analysis

	Using the REXX Analyzer
	Access the Primary Menu
	Analyze a REXX Procedure Library
	Generate a Summary Online Report
	Maintain Analysis Output

	Generate Reports
	Summary Report
	Detailed Report
	Example: Produce Online Reports
	Perform the Analysis
	Generate an Online Summary Report

	Sample Report
	Report Input Details
	Information to Prioritize Your Tivoli NetView REXX Migration

	6: REXX External Assembler API
	REXX and Assembler Programs
	Environmental Considerations
	Make Programs Accessible to CA NetMaster
	External Program Environment
	Provided Control Blocks
	Environment Block (ENVBLOCK)
	Table of External Entry Points (EXTE)
	Workblock Extension (WORKBLOCK_EXT)
	Instorage Block (INSTBLK)
	Parameter Block (PARMBLOK)
	Evaluation Block (EVALBLOK)

	Supported Execution Interfaces
	Subcommand Handlers
	External Procedure and Function Handlers
	LINK and ATTACH Handlers
	Entry Points in the EXTE Table

	7: Executing NetMaster REXX Procedures Using NCL
	Execution of REXX Procedures from an NCL Procedure
	Execution of REXX Procedures Through Trouble Tickets

	A: NCCF Commands
	Get Help in the NCCF-like Facility
	Supported NCCF Commands
	Supported Command Prefix Label Parameters
	Determine Link Names
	Get Help About the Command Prefix Label

	REXX Commands

	B: REXX Functions
	REXX Functions

	C: Pipe Stages
	Pipe Stage Commands
	Edit Stage Orders

	D: Hypothetical Case Study--Migrating from Tivoli NetView
	About the Case Study
	The Hypothetical Environment
	Composition of the Migration Team
	The Migration Plan
	Identify the NetView REXX Procedures that Need Migrating
	Prepare the NetView REXX Procedures for Analysis
	Analyze the NetView REXX Procedures
	Run the REXX Analyzer
	Generate and Review the Report

	Migrate REXX Procedures that Passed Analysis
	Verify the Procedures in Tivoli NetView
	Test the Procedures in CA NetMaster
	Review Test Results
	Correct and Retest the Procedures in CA NetMaster
	Procedures with GREXX Compilation Errors
	Procedures with Incorrect Output
	Procedures with Unsupported Parameters
	Procedures That Did Not Execute
	Considerations

	Migrate REXX Procedures That Contain Only One Unrecognized Entity
	Migrate REXX Procedures That Contain Multiple Unrecognized Entities
	CA NetMaster Features

	Complete the Migration
	CA Service Desk Integration
	What Is Next?

	Index

